A hybrid two-stage SqueezeNet and support vector machine system for Parkinson’s disease detection based on handwritten spiral patterns
International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 4, pp. 549-561.

Voir la notice de l'article provenant de la source Library of Science

Parkinson’s disease (PD) is the second most common neurological disorder in the world. Nowadays, it is estimated that it affects from 2
Keywords: Parkinson’s disease, spirography, convolutional neural network, deep learning
Mots-clés : choroba Parkinsona, spirografia, sieć neuronowa konwolucyjna, uczenie głębokie
@article{IJAMCS_2021_31_4_a0,
     author = {Bernardo, Lucas Salvador and Dama\v{s}evi\v{c}ius, Robertas and de Albuquerque, Victor Hugo C. and Maskeli\={u}nas, Rytis},
     title = {A hybrid two-stage {SqueezeNet} and support vector machine system for {Parkinson{\textquoteright}s} disease detection based on handwritten spiral patterns},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {549--561},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a0/}
}
TY  - JOUR
AU  - Bernardo, Lucas Salvador
AU  - Damaševičius, Robertas
AU  - de Albuquerque, Victor Hugo C.
AU  - Maskeliūnas, Rytis
TI  - A hybrid two-stage SqueezeNet and support vector machine system for Parkinson’s disease detection based on handwritten spiral patterns
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2021
SP  - 549
EP  - 561
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a0/
LA  - en
ID  - IJAMCS_2021_31_4_a0
ER  - 
%0 Journal Article
%A Bernardo, Lucas Salvador
%A Damaševičius, Robertas
%A de Albuquerque, Victor Hugo C.
%A Maskeliūnas, Rytis
%T A hybrid two-stage SqueezeNet and support vector machine system for Parkinson’s disease detection based on handwritten spiral patterns
%J International Journal of Applied Mathematics and Computer Science
%D 2021
%P 549-561
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a0/
%G en
%F IJAMCS_2021_31_4_a0
Bernardo, Lucas Salvador; Damaševičius, Robertas; de Albuquerque, Victor Hugo C.; Maskeliūnas, Rytis. A hybrid two-stage SqueezeNet and support vector machine system for Parkinson’s disease detection based on handwritten spiral patterns. International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 4, pp. 549-561. http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_4_a0/

[1] [1] Al-Yousef, N., Al, R., Al, R., Al-Abdullatif, R., Al-Mutairi, F. and Bchir, O. (2020). Parkinson’s disease diagnosis using spiral test on digital tablets, International Journal of Advanced Computer Science and Applications 11(5): 461–470.

[2] [2] Ali, L., Zhu, C., Golilarz, N.A., Javeed, A., Zhou, M. and Liu, Y. (2019). Reliable Parkinson’s disease detection by analyzing handwritten drawings: Construction of an unbiased cascaded learning system based on feature selection and adaptive boosting model, IEEE Access 7: 116480–116489.

[3] [3] Almeida, J.S., Filho, P.P.R., Carneiro, T., Wei, W., Damaševičius, R., Maskeliūnas, R. and de Albuquerque, V.H.C. (2019). Detecting Parkinson’s disease with sustained phonation and speech signals using machine learning techniques, Pattern Recognition Letters 125: 55–62.

[4] [4] Awatramani, V. and Gupta, D. (2020). Parkinson’s disease detection through visual deep learning, in D. Gupta et al. (Eds), Advances in Intelligent Systems and Computing, Springer, Singapore, pp. 963–972.

[5] [5] Bernardo, L.S., Quezada, A., Munoz, R., Maia, F.M., Pereira, C.R., Wu, W. and de Albuquerque, V.H.C. (2019). Handwritten pattern recognition for early Parkinson’s disease diagnosis, Pattern Recognition Letters 125: 78–84.

[6] [6] Chakraborty, S., Aich, S., Jong-Seong-Sim, Han, E., Park, J. and Kim, H.-C. (2020). Parkinson’s disease detection from spiral and wave drawings using convolutional neural networks: A multistage classifier approach, IEEE 22nd International Conference on Advanced Communication Technology (ICACT), Phoenix Park, South Korea, pp. 298–303.

[7] [7] Chen, J.H. and Asch, S.M. (2017). Machine learning and prediction in medicine-Beyond the peak of inflated expectations, New England Journal of Medicine 376(26): 2507–2509.

[8] [8] Chen, J., Liao, M., Wang, G. and Chen, C. (2020). An intelligent multimodal framework for identifying children with autism spectrum disorder, International Journal of Applied Mathematics and Computer Science 30(3): 435–448, DOI: 10.34768/amcs-2020-0032.

[9] [9] Chen-Plotkin, A.S. (2017). Blood transcriptomics for Parkinson disease?, Nature Reviews Neurology 14(1): 5–6.

[10] [10] Cristianini, N. and Ricci, E. (2008). Support vector machines, in M.Y. Kao et al. (Ed.), Encyclopedia of Algorithms, Springer, Boston, pp. 928–932.

[11] [11] Crowley, E., Nolan, Y. and Sullivan, A. (2019). Exercise as a therapeutic intervention for motor and non-motor symptoms in Parkinson’s disease: Evidence from rodent models, Progress in Neurobiology 172: 2–22.

[12] [12] Damaševičius, R. (2010). Optimization of SVM parameters for recognition of regulatory DNA sequences, TOP 18(2): 339–353.

[13] [13] de Ipina, K.L., Solé-Casals, J., Faúndez-Zanuy, M., Calvo, P., Sesa, E., Roure, J., de Lizarduy, U.M., Beitia, B., Fernández, E., Iradi, J., Garcia-Melero, J. and Bergareche, A. (2018). Automatic analysis of Archimedes’ spiral for characterization of genetic essential tremor based on Shannon’s entropy and fractal dimension, Entropy 20(7): 531.

[14] [14] Espay, A.J., Bonato, P., Nahab, F.B., Maetzler, W., Dean, J.M., Klucken, J., Eskofier, B.M., Merola, A., Horak, F., Lang, A.E., Reilmann, R., Giuffrida, J., Nieuwboer, A., Horne, M., Little, M.A., Litvan, I., Simuni, T., Dorsey, E.R., Burack, M.A., Kubota, K., Kamondi, A., Godinho, C., Daneault, J.-F., Mitsi, G., Krinke, L., Hausdorff, J.M., Bloem, B.R. and Papapetropoulos, S. (2016). Technology in Parkinson’s disease: Challenges and opportunities, Movement Disorders 31(9): 1272–1282.

[15] [15] Gallicchio, C., Micheli, A. and Pedrelli, L. (2018). Deep echo state networks for diagnosis of Parkinson’s disease, 26th European Symposium on Artificial Neural Networks, ESANN 2018, Bruges, Belgium, pp. 397–402.

[16] [16] Garre-Olmo, J., Faúndez-Zanuy, M., de Ipiña, K.L., Calvó-Perxas, L. and Turró-Garriga, O. (2017). Kinematic and pressure features of handwriting and drawing: Preliminary results between patients with mild cognitive impairment, Alzheimer disease and healthy controls, Current Alzheimer Research 14(9): 960–968.

[17] [17] Gelb, D.J., Oliver, E. and Gilman, S. (1999). Diagnostic criteria for Parkinson disease, Archives of Neurology 56(1): 33–39.

[18] [18] Gil-Martín, M., Montero, J.M. and San-Segundo, R. (2019). Parkinson’s disease detection from drawing movements using convolutional neural networks, Electronics 8(8): 1–10, Article 907.

[19] [19] Guan, H., Zhang, Y., Cheng, H.-D. and Tang, X. (2020). Bounded-abstaining classification for breast tumors in imbalanced ultrasound images, International Journal of Applied Mathematics and Computer Science 30(2): 325–336, DOI: 10.34768/amcs-2020-0025.

[20] [20] Gupta, D., Julka, A., Jain, S., Aggarwal, T., Khanna, A., Arunkumar, N. and de Albuquerque, V.H.C. (2019). Optimized cuttlefish algorithm for diagnosis of Parkinson’s disease, Cognitive Systems Research 52: 36–48.

[21] [21] Gupta, D., Sundaram, S., Khanna, A., Hassanien, A.E. and de Albuquerque, V. H.C. (2018). Improved diagnosis of Parkinson’s disease using optimized crow search algorithm, Computers Electrical Engineering 68: 412–424.

[22] [22] Haubenberger, D., Kalowitz, D., Nahab, F.B., Toro, C., Ippolito, D., Luckenbaugh, D.A., Wittevrongel, L. and Hallett, M. (2011). Validation of digital spiral analysis as outcome parameter for clinical trials in essential tremor, Movement Disorders 26(11): 2073–2080.

[23] [23] Hess, C.W., Hsu, A.W., Yu, Q., Ortega, R. and Pullman, S.L. (2014). Increased variability in spiral drawing in patients with functional (psychogenic) tremor, Human Movement Science 38: 15–22.

[24] [24] Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J. and Keutzer, K. (2016). Squeezenet: Alexnet-level accuracy with 50× fewer parameters and 0.5 mb model size, arXiv 1602.07360.

[25] [25] Impedovo, D. and Pirlo, G. (2019). Dynamic handwriting analysis for the assessment of neurodegenerative diseases: A pattern recognition perspective, IEEE Reviews in Biomedical Engineering 12: 209–220.

[26] [26] Impedovo, D., Pirlo, G. and Vessio, G. (2018). Dynamic handwriting analysis for supporting earlier Parkinson’s disease diagnosis, Information 9(10): 1–11, Article: 247.

[27] [27] Isenkul, M., Sakar, B. and O. Kursun, O. (2014). Improved spiral test using digitized graphics tablet for monitoring Parkinson’s disease, 2nd International Conference on e-Health and Telemedicine (ICEHTM-2014), Istanbul, Turkey, pp. 171–175.

[28] [28] Islam, M.M., Tasnim, N. and Baek, J.-H. (2020). Human gender classification using transfer learning via Pareto frontier CNN networks, Inventions 5(2): 16.

[29] [29] Jin, W., Dong, S., Dong, C. and Ye, X. (2021). Hybrid ensemble model for differential diagnosis between Covid-19 and common viral pneumonia by chest x-ray radiograph, Computers in Biology and Medicine 131, Article 104252.

[30] [30] Kalliola, J., Kapočiūte-Dzikiene, J. and Damaševičius, R. (2021). Neural network hyperparameter optimization for prediction of real estate prices in Helsinki, PeerJ Computer Science 7: e444.

[31] [31] Khatamino, P., Canturk, I. and Ozyilmaz, L. (2018). A deep learning-CNN based system for medical diagnosis: An application on Parkinson’s disease handwriting drawings, 6th International IEEE Conference on Control Engineering Information Technology (CEIT), Istanbul, Turkey, pp. 1–6.

[32] [32] Khoshdeli, M., Cong, R. and Parvin, B. (2017). Detection of nuclei in H stained sections using convolutional neural networks, IEEE EMBS International Conference on Biomedical Health Informatics (BHI), Orlando, USA, pp. 105–108.

[33] [33] Kowal, M., Skobel, M., Gramacki, A. and Korbicz, J. (2021). Breast cancer nuclei segmentation and classification based on a deep learning approach, International Journal of Applied Mathematics and Computer Science 31(1): 85–106, DOI: 10.34768/amcs-2021-0007.

[34] [34] Kriti, Virmani, J. and Agarwal, R. (2020). Deep feature extraction and classification of breast ultrasound images, Multimedia Tools and Applications 79(37–38): 27257–27292.

[35] [35] Lauraitis, A., Maskeliunas, R., Damasevicius, R., Polap, D. and Wozniak, M. (2019). A smartphone application for automated decision support in cognitive task based evaluation of central nervous system motor disorders, IEEE Journal of Biomedical and Health Informatics 23(5): 1865–1876.

[36] [36] Lauraitis, A., Maskeliūnas, R., Damaševičius, R. and Krilavičius, T. (2020). A mobile application for smart computer-aided self-administered testing of cognition, speech, and motor impairment, Sensors 20(11), Article 3236.

[37] [37] Lin, P.-C., Chen, K.-H., Yang, B.-S. and Chen, Y.-J. (2018). A digital assessment system for evaluating kinetic tremor in essential tremor and Parkinson’s disease, BMC Neurology 18(1): 25.

[38] [38] Luciano, M.S., Wang, C., Ortega, R.A., Yu, Q., Boschung, S., Soto-Valencia, J., Bressman, S.B., Lipton, R.B., Pullman, S. and Saunders-Pullman, R. (2016). Digitized spiral drawing: A possible biomarker for early Parkinson’s disease, PLOS ONE 11(10): e0162799.

[39] [39] Moetesum, M., Siddiqi, I., Vincent, N. and Cloppet, F. (2019). Assessing visual attributes of handwriting for prediction of neurological disorders-A case study on Parkinson’s disease, Pattern Recognition Letters 121: 19–27.

[40] [40] Moshkova, A., Samorodov, A., Ivanova, E. and Fedotova, E. (2020). High accuracy discrimination of Parkinson’s disease from healthy controls by hand movements analysis using LeapMotion sensor and 1D convolutional neural network, Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, Yekaterinburg, Russia, pp. 0062–0065.

[41] [41] Mucha, J., Mekyska, J., Galaz, Z., Faundez-Zanuy, M., de Ipina, K.L., Zvoncak, V., Kiska, T., Smekal, Z., Brabenec, L. and Rektorova, I. (2018). Identification and monitoring of Parkinson’s disease dysgraphia based on fractional-order derivatives of online handwriting, Applied Sciences 8(12): 2566.

[42] [42] Nguyen, T., Park, E., Cui, X., Nguyen, V. and Kim, H. (2018). fPADnet: Small and efficient convolutional neural network for presentation attack detection, Sensors 18(8): 2532.

[43] [43] Oertel, W.H. (2017). Recent advances in treating Parkinson’s disease, F1000Research 6: 260.

[44] [44] Oh, S.L., Hagiwara, Y., Raghavendra, U., Yuvaraj, R., Arunkumar, N., Murugappan, M. and Acharya, U.R. (2018). A deep learning approach for Parkinson’s disease diagnosis from EEG signals, Neural Computing and Applications 32(15): 10927–10933.

[45] [45] Pereira, C.R., Pereira, D.R., da Silva, F.A., Hook, C., Weber, S.A., Pereira, L.A. and Papa, J.P. (2015). A step towards the automated diagnosis of Parkinson’s disease: Analyzing handwriting movements, IEEE 28th International Symposium on Computer-Based Medical Systems, Sao Carlos, Brazil, pp. 171–176.

[46] [46] Pereira, C.R., Pereira, D.R., Rosa, G.H., Albuquerque, V.H., Weber, S.A., Hook, C. and Papa, J.P. (2018). Handwritten dynamics assessment through convolutional neural networks: An application to Parkinson’s disease identification, Artificial Intelligence in Medicine 87: 67–77.

[47] [47] Pereira, C.R., Pereira, D.R., Silva, F.A., Masieiro, J.P., Weber, S.A.T., Hook, C. and Papa, J.P. (2016). A new computer vision-based approach to aid the diagnosis of Parkinson’s disease, Computer Methods and Programs in Biomedicine 136: 79–88.

[48] [48] Poewe, W., Seppi, K., Tanner, C.M., Halliday, G.M., Brundin, P., Volkmann, J., Schrag, A.-E. and Lang, A.E. (2017). Parkinson disease, Nature Reviews Disease Primers 3(1), Article 17013.

[49] [49] Priya, S.J., Rani, A.J., Subathra, M.S.P., Mohammed, M.A., Damaševičius, R. and Ubendran, N. (2021). Local pattern transformation based feature extraction for recognition of Parkinson’s disease based on gait signals, Diagnostics 11(8), Article 1395.

[50] [50] Raghavendra, U., Bhat, N.S., Gudigar, A. and Acharya, U.R. (2018). Automated system for the detection of thoracolumbar fractures using a CNN architecture, Future Generation Computer Systems 85: 184–189.

[51] [51] Rosenblum, S., Samuel, M., Zlotnik, S., Erikh, I. and Schlesinger, I. (2013). Handwriting as an objective tool for Parkinson’s disease diagnosis, Journal of Neurology 260(9): 2357–2361.

[52] [52] Saunders-Pullman, R., Derby, C., Stanley, K., Floyd, A., Bressman, S., Lipton, R.B., Deligtisch, A., Severt, L., Yu, Q., Kurtis, M. and Pullman, S.L. (2008). Validity of spiral analysis in early Parkinson’s disease, Movement Disorders 23(4): 531–537.

[53] [53] Savitt, J.M. (2006). Diagnosis and treatment of Parkinson disease: Molecules to medicine, Journal of Clinical Investigation 116(7): 1744–1754.

[54] [54] Shaban, M. (2020). Deep convolutional neural network for Parkinson’s disease based handwriting screening, IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops), Iowa City, USA, pp. 1–4.

[55] [55] Sivaranjini, S. and Sujatha, C.M. (2019). Deep learning based diagnosis of Parkinson’s disease using convolutional neural network, Multimedia Tools and Applications 79(21–22): 15467–15479.

[56] [56] Stefano, C.D., Fontanella, F., Impedovo, D., Pirlo, G. and di Freca, A.S. (2019). Handwriting analysis to support neurodegenerative diseases diagnosis: A review, Pattern Recognition Letters 121: 37–45.

[57] [57] Tajbakhsh, N., Shin, J.Y., Gurudu, S.R., Hurst, R.T., Kendall, C.B., Gotway, M.B. and Liang, J. (2016). Convolutional neural networks for medical image analysis: Full training or fine tuning?, IEEE Transactions on Medical Imaging 35(5): 1299–1312.

[58] [58] Trist, B.G., Hare, D.J. and Double, K.L. (2019). Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease, Aging Cell 18(6), Article e13031.

[59] [59] Tseng, M.H. and Cermak, S.A. (1993). The influence of ergonomic factors and perceptual-motor abilities on handwriting performance, American Journal of Occupational Therapy 47(10): 919–926.

[60] [60] Tysnes, O.-B. and Storstein, A. (2017). Epidemiology of Parkinson’s disease, Journal of Neural Transmission 124(8): 901–905.

[61] [61] van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-SNE, Journal of Machine Learning Research 9(86): 2579–2605.

[62] [62] Wang, H., Zheng, B., Yoon, S.W. and Ko, H.S. (2018). A support vector machine-based ensemble algorithm for breast cancer diagnosis, European Journal of Operational Research 267(2): 687–699.

[63] [63] Wang, M. and Chen, H. (2020). Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis, Applied Soft Computing 88: 105946.

[64] [64] Zham, P., Arjunan, S.P., Raghav, S. and Kumar, D.K. (2018). Efficacy of guided spiral drawing in the classification of Parkinson’s disease, IEEE Journal of Biomedical and Health Informatics 22(5): 1648–1652.

[65] [65] Zham, P., Kumar, D., Dabnichki, P., Arjunan, S.P. and Raghav, S. (2017). Distinguishing different stages of Parkinson’s disease using composite index of speed and pen-pressure of sketching a spiral, Frontiers in Neurology 8, Article 435.

[66] [66] Zhang, T., Zhang, Y., Cao, Y., n Li and Hao, L. (2020). Diagnosing Parkinson’s disease with speech signal based on convolutional neural network, International Journal of Computer Applications in Technology 63(4): 348.