Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2021_31_3_a5, author = {Siminski, Krzysztof}, title = {GrNFS: {A} granular neuro-fuzzy system for regression in large volume data}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {445--459}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_3_a5/} }
TY - JOUR AU - Siminski, Krzysztof TI - GrNFS: A granular neuro-fuzzy system for regression in large volume data JO - International Journal of Applied Mathematics and Computer Science PY - 2021 SP - 445 EP - 459 VL - 31 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_3_a5/ LA - en ID - IJAMCS_2021_31_3_a5 ER -
%0 Journal Article %A Siminski, Krzysztof %T GrNFS: A granular neuro-fuzzy system for regression in large volume data %J International Journal of Applied Mathematics and Computer Science %D 2021 %P 445-459 %V 31 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_3_a5/ %G en %F IJAMCS_2021_31_3_a5
Siminski, Krzysztof. GrNFS: A granular neuro-fuzzy system for regression in large volume data. International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 3, pp. 445-459. http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_3_a5/
[1] [1] Ahmed, M.M. and Isa, N.A.M. (2017). Knowledge base to fuzzy information granule: A review from the interpretability-accuracy perspective, Applied Soft Computing 54: 121–140.
[2] [2] Alcalá, R., Alcalá-Fdez, J., Casillas, J., Cordón, O. and Herrera, F. (2006). Hybrid learning models to get the interpretability-accuracy trade-off in fuzzy modeling, Soft Computing 10(9): 717–734.
[3] [3] Alonso, J.M. and Magdalena, L. (2011). Special issue on interpretable fuzzy systems, Information Sciences 181(20): 4331–4339.
[4] [4] Atanassov, K.T. (1986). Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1): 87–96.
[5] [5] Bargiela, A. and Pedrycz, W. (2006). The roots of granular computing, 2006 IEEE International Conference on Granular Computing, Atlanta, USA, pp. 806–809.
[6] [6] Bisi, C., Chiaselotti, G., Ciucci, D., Gentile, T. and Infusino, F.G. (2017). Micro and macro models of granular computing induced by the indiscernibility relation, Information Sciences 388–389: 247–273.
[7] [7] Botta, A., Lazzerini, B., Marcelloni, F. and Stefanescu, D.C. (2009). Context adaptation of fuzzy systems through a multi-objective evolutionary approach based on a novel interpretability index, Soft Computing 13(5): 437–449.
[8] [8] Ciucci, D. (2016). Orthopairs and granular computing, Granular Computing 1: 159–170.
[9] [9] Cpałka, K., Łapa, K., Przybył, A. and Zalasiński, M. (2014). A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects, Neurocomputing 135: 203–217.
[10] [10] Dunn, J.C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact, well separated clusters, Journal Cybernetics 3(3): 32–57.
[11] [11] Evsukoff, A.G., Galichet, S., de Lima, B.S. and Ebecken, N.F. (2009). Design of interpretable fuzzy rule-based classifiers using spectral analysis with structure and parameters optimization, Fuzzy Sets and Systems 160(7): 857–881.
[12] [12] Gacto, M.J., Alcalá, R. and Herrera, F. (2011). Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures, Information Sciences 181(20): 4340–4360.
[13] [13] Herrera, L.J., Pomares, H., Rojas, I., Valenzuela, O. and Prieto, A. (2005). TASE, a Taylor series-based fuzzy system model that combines interpretability and accuracy, Fuzzy Sets and Systems 153(3): 403–427.
[14] [14] Hu, X., Pedrycz, W., Wu, G. and Wang, X. (2017). Data reconstruction with information granules: An augmented method of fuzzy clustering, Applied Soft Computing 55: 523–532.
[15] [15] Juang, C.-F. and Chen, C.-Y. (2013). Data-driven interval type-2 neural fuzzy system with high learning accuracy and improved model interpretability, IEEE Transactions on Cybernetics 43(6): 1781–1795.
[16] [16] Juang, C.-F. and Lin, C.-T. (1998). An online self-constructing neural fuzzy inference network and its applications, IEEE Transactions on Fuzzy Systems 6(1): 12–32.
[17] [17] Juang, C.F. and Tsao, Y.W. (2008). A type-2 self-organizing neural fuzzy system and its FPGA implementation, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 38(6): 1537–1548.
[18] [18] Keet, C.M. (2008). A Formal Theory of Granularity, PhD thesis, Free University of Bozen-Bolzano, Bolzano.
[19] [19] Leski, J. (2008). Neuro-Fuzzy Systems, Scientific and Engineering Publishers WNT, Warsaw, (in Polish).
[20] [20] Lorenz, E.N. (1963). Deterministic nonperiodic flow, Journal of the Atmospheric Sciences 20(2): 130–141.
[21] [21] Mackey, M.C. and Glass, L. (1977). Oscillation and chaos in physiological control systems, Science 197(4300): 287–289.
[22] [22] Mendel, J.M. (2004). Computing derivatives in interval type-2 fuzzy logic systems, IEEE Transactions on Fuzzy Systems 12(1): 84–98.
[23] [23] Pawlak, Z. (1996). Rough sets, rough relations and rough functions, Fundamenta Informaticae 27(2): 103–108.
[24] [24] Pedrycz, A., Hirota, K., Pedrycz, W. and Dong, F. (2012). Granular representation and granular computing with fuzzy sets, Fuzzy Sets and Systems 203: 17–32.
[25] [25] Pedrycz, W. (1998). Shadowed sets: Representing and processing fuzzy sets, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 28(1): 103–109.
[26] [26] Pedrycz, W. (2013). Granular Computing: Analysis and Design of Intelligent Systems, CRC Press, Boca Raton.
[27] [27] Pedrycz,W. and Gomide, F. (2007). Fuzzy Systems Engineering: Toward Human-Centric Computing, JohnWiley, Hoboken.
[28] [28] Pedrycz, W., Hmouz, R.A., Balamash, A.S. and Morfeq, A. (2015a). Hierarchical granular clustering: An emergence of information granules of higher type and higher order, IEEE Transactions on Fuzzy Systems 23(6): 2270–2283.
[29] [29] Pedrycz, W. and Homenda, W. (2013). Building the fundamentals of granular computing: A principle of justifiable granularity, Applied Soft Computing 13(10): 4209–4218.
[30] [30] Pedrycz, W., Succi, G., Sillitti, A. and Iljazi, J. (2015b). Data description: A general framework of information granules, Knowledge-Based Systems 80: 98–108.
[31] [31] Qian, Y.H., Liang, J.Y., Yao, Y.Y. and Dang, C.Y. (2010). MGRS: A multi-granulation rough set, Information Sciences 180(6): 949–970.
[32] [32] Qian, Y., Liang, J.,Wu, W.-Z. and Dang, C. (2011). Information granularity in fuzzy binary GrC model, IEEE Transactions on Fuzzy Systems 19(2): 253–264.
[33] [33] Reyes-Galaviz, O.F. and Pedrycz, W. (2015). Granular fuzzy models: Analysis, design, and evaluation, International Journal of Approximate Reasoning 64: 1–19.
[34] [34] Rössler, O.E. (1976). An equation for continuous chaos, Physics Letters A 57(5): 397–398.
[35] [35] Salehi, S., Selamat, A. and Fujita, H. (2015). Systematic mapping study on granular computing, Knowledge-Based Systems 80: 78–97.
[36] [36] Shifei, D., Li, X., Hong, Z. and Liwen, Z. (2010). Research and progress of cluster algorithms based on granular computing, International Journal of Digital Content Technology and Its Applications 4(5): 96–104.
[37] [37] Siminski, K. (2014). Neuro-fuzzy system with weighted attributes, Soft Computing 18(2): 285–297.
[38] [38] Siminski, K. (2015). Rough subspace neuro-fuzzy system, Fuzzy Sets and Systems 269: 30–46.
[39] [39] Siminski, K. (2017). Interval type-2 neuro-fuzzy system with implication-based inference mechanism, Expert Systems with Applications 79C: 140–152.
[40] [40] Siminski, K. (2019). NFL—free library for fuzzy and neuro-fuzzy systems, in S. Kozielski et al. (Eds), Beyond Databases, Architectures and Structures. Paving the Road to Smart Data Processing and Analysis, Springer International Publishing, Cham, pp. 139–150.
[41] [41] Siminski, K. (2020). GrFCM—Granular clustering of granular data, in A. Gruca et al. (Eds), Man–Machine Interactions 6, Springer, Cham, pp. 111–121.
[42] [42] Siminski, K. (2021). An outlier-robust neuro-fuzzy system for classification and regression, International Journal of Applied Mathematics and Computer Science 31(2): 303–319, DOI: 10.34768/amcs-2021-0021.
[43] [43] Skowron, A., Jankowski, A. and Dutta, S. (2016). Interactive granular computing, Granular Computing 1: 95–113.
[44] [44] Sugeno, M. and Kang, G.T. (1988). Structure identification of fuzzy model, Fuzzy Sets ans Systems 28(1): 15–33.
[45] [45] Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its application to modeling and control, IEEE Transactions on Systems, Man and Cybernetics 15(1): 116–132.
[46] [46] Wang, D., Pedrycz, W. and Li, Z. (2019). Granular data aggregation: An adaptive principle of the justifiable granularity approach, IEEE Transactions on Cybernetics 49(2): 1–10.
[47] [47] Yang, X., Li, T., Liu, D. and Fujita, H. (2019). A temporal-spatial composite sequential approach of three-way granular computing, Information Sciences 486: 171–189.
[48] [48] Yao, J.T., Vasilakos, A.V. and Pedrycz, W. (2013). Granular computing: Perspectives and challenges, IEEE Transactions on Cybernetics 43(6): 1977–1989.
[49] [49] Yao, Y. (2007). The art of granular computing, in M. Kryszkiewicz et al. (Eds), Rough Sets and Intelligent Systems Paradigms, Springer, Berlin/Heidelberg, pp. 101–112.
[50] [50] Yao, Y. (2008). Granular computing: Past, present and future, 2008 IEEE International Conference on Granular Computing, GrC 2008, Hangzhou, China, pp. 80–85.
[51] [51] Yao, Y. (2018). Three-way decision and granular computing, International Journal of Approximate Reasoning 103: 107–123.
[52] [52] Yao, Y. (2020). Three-way granular computing, rough sets, and formal concept analysis, International Journal of Approximate Reasoning 116: 106–125.
[53] [53] Yao, Y. and Zhong, N. (2007). Granular computing, in B.W. Wah (Ed.), Wiley Encyclopedia of Computer Science and Engineering, Wiley, Hoboken.
[54] [54] Yen, J., Wang, L. and Gillespie, C. W. (1998). Improving the interpretability of TSK fuzzy models by combining global learning and local learning, IEEE Transactions on Fuzzy Systems 6(4): 530–537.
[55] [55] Zadeh, L.A. (1965). Fuzzy sets, Information and Control 8: 338–353.
[56] [56] Zadeh, L.A. (1979). Fuzzy sets and information granularity, in N. Gupta et al. (Eds), Advances in Fuzzy Set Theory and Applications, North-Holland Publishing, Amsterdam, pp. 3–18.
[57] [57] Zadeh, L.A. (1997). Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic, Fuzzy Sets and Systems 90(2): 111–127.
[58] [58] Zadeh, L.A. (2002). From computing with numbers to computing with words—From manipulation of measurements to manipulation of perceptions, International Journal of Applied Mathematics and Computer Science 12(3): 307–324.