Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2021_31_3_a2, author = {Rauh, Andreas and Jaulin, Luc}, title = {A computationally inexpensive algorithm for determining outer and inner enclosures of nonlinear mappings of ellipsoidal domains}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {399--415}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_3_a2/} }
TY - JOUR AU - Rauh, Andreas AU - Jaulin, Luc TI - A computationally inexpensive algorithm for determining outer and inner enclosures of nonlinear mappings of ellipsoidal domains JO - International Journal of Applied Mathematics and Computer Science PY - 2021 SP - 399 EP - 415 VL - 31 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_3_a2/ LA - en ID - IJAMCS_2021_31_3_a2 ER -
%0 Journal Article %A Rauh, Andreas %A Jaulin, Luc %T A computationally inexpensive algorithm for determining outer and inner enclosures of nonlinear mappings of ellipsoidal domains %J International Journal of Applied Mathematics and Computer Science %D 2021 %P 399-415 %V 31 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_3_a2/ %G en %F IJAMCS_2021_31_3_a2
Rauh, Andreas; Jaulin, Luc. A computationally inexpensive algorithm for determining outer and inner enclosures of nonlinear mappings of ellipsoidal domains. International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 3, pp. 399-415. http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_3_a2/
[1] [1] Becis-Aubry, Y. (2020). Ellipsoidal constrained state estimation in presence of bounded disturbances, Preprint, arxiv.org/pdf/2012.03267v1.pdf.
[2] [2] Bünger, F. (2020). A Taylor model toolbox for solving ODEs implemented in MATLAB/INTLAB, Journal of Computational and Applied Mathematics 368: 112511.
[3] [3] Bouissou, O., Chapoutot, A. and Djoudi, A. (2013). Enclosing temporal evolution of dynamical systems using numerical methods, in G. Brat et al. (Eds), NASA Formal Methods, Springer-Verlag, Berlin/Heidelberg, pp. 108–123.
[4] [4] Bourgois, A. and Jaulin, L. (2021). Interval centred form for proving stability of non-linear discrete-time systems, in T. Dang and S. Ratschan (Eds), Symbolic-Numeric Methods for Reasoning About CPS and IoT, Open Publishing Association, Den Haag, pp. 1–17.
[5] [5] Chapoutot, A. (2010). Interval slopes as a numerical abstract domain for floating-point variables, in R. Cousot and M. Martel (Eds), Static Analysis. SAS 2010, Lecture Notes in Computer Science, Vol. 6337, Springer, Berlin/Heidelberg, pp. 184–200.
[6] [6] Chen, M. and Rincon-Mora, G. (2006). Accurate electrical battery model capable of predicting runtime and I-V performance, IEEE Transactions on Energy Conversion 21(2): 504–511.
[7] [7] Cornelius, H. and Lohner, R. (1984). Computing the range of values of real functions with accuracy higher than second order, Computing 33(3–4): 331–347.
[8] [8] de Berg, M., Cheong, O., van Kreveld, M. and Overmars, M. (2008). Computational Geometry: Algorithms and Applications, 3rd Edn, Springer, Berlin/Heidelberg.
[9] [9] Erdinc, O., Vural, B. and Uzunoglu, M. (2009). A dynamic Lithium-ion battery model considering the effects of temperature and capacity fading, International Conference on Clean Electrical Power, Capri, Italy, pp. 383–386.
[10] [10] Černý, M. (2012). Goffin’s algorithm for zonotopes, Kybernetika 48(5): 890–906.
[11] [11] Farrera, B., López-Estrada, F.-R., Chadli, M., Valencia-Palomo, G. and Gómez-Peñate, S. (2020). Distributed fault estimation of multi-agent systems using a proportional-integral observer: A leader-following application, International Journal of Applied Mathematics and Computer Science 30(3): 551–560, DOI: 10.34768/amcs-2020-0040.
[12] [12] Goubault, E., Mullier, O., Putot, S. and Kieffer, M. (2014). Inner approximated reachability analysis, 17th International Conference on Hybrid Systems: Computation and Control, Berlin, Germany, pp. 163–172.
[13] [13] Griewank, A. (2000). Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, SIAM, Philadelphia.
[14] [14] Hairer, E., Lubich, C. and Wanner, G. (2002). Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer, Berlin/Heidelberg.
[15] [15] Halder, A. (2018). On the parameterized computation of minimum volume outer ellipsoid of Minkowski sum of ellipsoids, IEEE Conference on Decision and Control (CDC), Miami Beach, USA, pp. 4040–4045.
[16] [16] Hanebeck, U.D., Briechle, K. and Rauh, A. (2003). Progressive Bayes: A new framework for nonlinear state estimation, in B.V. Dasarathy (Ed.), Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2003, International Society for Optics and Photonics, Bellingham, pp. 256–267.
[17] [17] Hoefkens, J. (2001). Rigorous Numerical Analysis with High-Order Taylor Models, PhD thesis, Michigan State University, East Lansing, https://groups.nscl.msu.edu/nscl_library/Thesis/Hoefkens,%20Jens.pdf.
[18] [18] Houska, B., Villanueva, M. and Chachuat, B. (2015). Stable set-valued integration of nonlinear dynamic systems using affine set-parameterizations, SIAM Journal on Numerical Analysis 53(5): 2307–2328.
[19] [19] Jambawalikar, S. and Kumar, P. (2008). A note on approximate minimum volume enclosing ellipsoid of ellipsoids, International Conference on Computational Sciences and Its Applications, Perugia, Italy, pp. 478–487.
[20] [20] Jaulin, L., Kieffer, M., Didrit, O. and Walter, É. (2001). Applied Interval Analysis, Springer-Verlag, London.
[21] [21] John, F. (1948). Extremum problems with inequalities as subsidiary conditions, Studies and Essays Presented to R. Courant on his 60th Birthday, Interscience Publishers, New York, pp. 187–204.
[22] [22] Julier, S., Uhlmann, J. and Durrant-Whyte, H. (2000). A new approach for the nonlinear transformation of means and covariances in filters and estimators, IEEE Transactions on Automatic Control 45(3): 477–482.
[23] [23] Kalman, R. (1960). A new approach to linear filtering and prediction problems, Transaction of the ASME: Journal of Basic Engineering 82(Series D): 35–45.
[24] [24] Krasnochtanova, I., Rauh, A., Kletting, M., Aschemann, H., Hofer, E.P. and Schoop, K.-M. (2010). Interval methods as a simulation tool for the dynamics of biological wastewater treatment processes with parameter uncertainties, Applied Mathematical Modeling 34(3): 744–762.
[25] [25] Krishnaswami, G. and Senapati, H. (2019). An introduction to the classical three-body problem: From periodic solutions to instabilities and chaos, Reson 24: 87–114, DOI: 10.1007/s12045-019-0760-1.
[26] [26] Kühn, W. (1999). Rigorous error bounds for the initial value problem based on defect estimation, Technical report, http://www.decatur.de/personal/papers/defect.zip.
[27] [27] Kurzhanskii, A.B. and Vályi, I. (1997). Ellipsoidal Calculus for Estimation and Control, Birkhäuser, Boston.
[28] [28] Kurzhanskiy, A. and Varaiya, P. (2006). Ellipsoidal Toolbox (ET), Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, USA, pp. 1498–1503.
[29] [29] Makino, K. and Berz, M. (2004). Suppression of the wrapping effect by Taylor model-based validated integrators, Technical Report MSU HEP 40910, Michigan State University, East Lansing.
[30] [30] Mayer, G. (2017). Interval Analysis and Automatic Result Verification, De Gruyter, Berlin/Boston.
[31] [31] Mejdi, S., Messaoud, A. and Ben Abdennour, R. (2020). Fault tolerant multicontrollers for nonlinear systems: A real validation on a chemical process, International Journal of Applied Mathematics and Computer Science 30(1): 61–74, DOI: 10.34768/amcs-2020-0005.
[32] [32] Moore, R. (1966). Interval Arithmetic, Prentice-Hall, Englewood Cliffs.
[33] [33] Moore, R., Kearfott, R. and Cloud, M. (2009). Introduction to Interval Analysis, SIAM, Philadelphia.
[34] [34] Musielak, Z.E. and Quarles, B. (2014). The three-body problem, Reports on Progress in Physics 77(6): 065901.
[35] [35] Neumaier, A., Fuchs, M., Dolejsi, E., Csendes, T., Dombi, J. and Banhelyi, B. (2007). Application of clouds for modeling uncertainties in robust space system design, Technical Report 05-5201, European Space Agency, Paris, http://www.esa.int/gsp/ACT/doc/ARI/ARI%20Study%20Report/ACT-RPT-INF-ARI-055201-Clouds.pdf.
[36] [36] Papoulis, A. (1965). Probability, Random Variables, and Stochastic Processes, McGraw-Hill, Tokyo.
[37] [37] Rauh, A., Bourgois, A. and Jaulin, L. (2021a). Ellipsoidal enclosure techniques for a verified simulation of initial value problems for ordinary differential equations, 5th International Conference on Control, Automation and Diagnosis (ICCAD’21), Grenoble, France, (accepted for publication).
[38] [38] Rauh, A., Bourgois, A. and Jaulin, L. (2021b). Union and intersection operators for thick ellipsoid state enclosures: Application to bounded-error discrete-time state observer design, Algorithms 14(3): 88.
[39] [39] Rauh, A., Briechle, K. and Hanebeck, U.D. (2009). Nonlinear measurement update and prediction: Prior density splitting mixture estimator, IEEE International Conference on Control Applications CCA 2009, St. Petersburg, Russia, pp. 1421–1426.
[40] [40] Rauh, A., Butt, S.S. and Aschemann, H. (2013). Nonlinear state observers and extended Kalman filters for battery systems, International Journal of Applied Mathematics and Computer Science 23(3): 539–556, DOI: 10.2478/amcs-2013-0041.
[41] [41] Rauh, A. and Jaulin, L. (2021). A novel thick ellipsoid approach for verified outer and inner state enclosures of discrete-time dynamic systems, 19th IFAC Symposium on System Identification: Learning Models for Decision and Control, online.
[42] [42] Rauh, A., Kletting, M., Aschemann, H. and Hofer, E.P. (2007). Reduction of overestimation in interval arithmetic simulation of biological wastewater treatment processes, Journal of Computational and Applied Mathematics 199(2): 207–212.
[43] [43] Rauh, A., Weitschat, R. and Aschemann, H. (2010). Modellgestützter Beobachterentwurf zur Betriebszustands- und Alterungserkennung für Lithium-Ionen-Batterien, VDI-Berichte 2105: Innovative Fahrzeugantriebe 2010 Die Vielfalt der Mobilität: Vom Verbrenner bis zum E-Motor: 7. VDI-Tagung Innovative Fahrzeugantriebe, Dresden, Germany, pp. 377–382.
[44] [44] Reuter, J., Mank, E., Aschemann, H. and Rauh, A. (2016). Battery state observation and condition monitoring using online minimization, 21st Internatioanl Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, pp. 1223–1228.
[45] [45] Romig, S., Jaulin, L. and Rauh, A. (2019). Using interval analysis to compute the invariant set of a nonlinear closed-loop control system, Algorithms 12(12): 262.
[46] [46] Stengel, R. (1994). Optimal Control and Estimation, Dover Publications, New York.
[47] [47] Tarbouriech, S., Garcia, G., Gomes da Silva, J. and Queinnec, I. (2011). Stability and Stabilization of Linear Systems With Saturating Actuators, Springer-Verlag, London.
[48] [48] Tóth, B. and Csendes, T. (2005). Empirical investigation of the convergence speed of inclusion functions in a global optimization context, Reliable Computing 11: 253–273.
[49] [49] Villanueva, M., Houska, B. and Chachuat, B. (2015). Unified framework for the propagation of continuous-time enclosures for parametric nonlinear ODEs, Journal of Global Optimization 62(3): 575–613.
[50] [50] Wang, B., Shi, W. and Miao, Z. (2015). Confidence analysis of standard deviational ellipse and its extension into higher dimensional Euclidean space, PLOS ONE 10(3): 1–17.
[51] [51] Yildirim, E.A. (2006). On the minimum volume covering ellipsoid of ellipsoids, SIAM Journal on Optimization 17(3): 621–641.