Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2021_31_3_a10, author = {Oz, Muhammed Ali Nur and Kaymakci, Ozgur Turay and Mercimek, Muharrem}, title = {A nested autoencoder approach to automated defect inspection on textured surfaces}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {515--523}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_3_a10/} }
TY - JOUR AU - Oz, Muhammed Ali Nur AU - Kaymakci, Ozgur Turay AU - Mercimek, Muharrem TI - A nested autoencoder approach to automated defect inspection on textured surfaces JO - International Journal of Applied Mathematics and Computer Science PY - 2021 SP - 515 EP - 523 VL - 31 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_3_a10/ LA - en ID - IJAMCS_2021_31_3_a10 ER -
%0 Journal Article %A Oz, Muhammed Ali Nur %A Kaymakci, Ozgur Turay %A Mercimek, Muharrem %T A nested autoencoder approach to automated defect inspection on textured surfaces %J International Journal of Applied Mathematics and Computer Science %D 2021 %P 515-523 %V 31 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_3_a10/ %G en %F IJAMCS_2021_31_3_a10
Oz, Muhammed Ali Nur; Kaymakci, Ozgur Turay; Mercimek, Muharrem. A nested autoencoder approach to automated defect inspection on textured surfaces. International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 3, pp. 515-523. http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_3_a10/
[1] [1] Alipour, M. and Harris, D.K. (2020). Increasing the robustness of material-specific deep learning models for crack detection across different materials, Engineering Structures 206: 110157.
[2] [2] Bergmann, P., Fauser, M., Sattlegger, D. and Steger, C. (2019). MVTec AD—A comprehensive real-world dataset for unsupervised anomaly detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, USA, pp. 9592–9600.
[3] [3] Bhattad, A., Rock, J. and Forsyth, D. (2018). Detecting anomalous faces with ‘no peeking’ autoencoders, arXiv 1802.05798.
[4] [4] da Costa, A.Z., Figueroa, H.E. and Fracarolli, J.A. (2020). Computer vision based detection of external defects on tomatoes using deep learning, Biosystems Engineering 190: 131–144.
[5] [5] He, T., Liu, Y., Xu, C., Zhou, X., Hu, Z. and Fan, J. (2019). A fully convolutional neural network for wood defect location and identification, IEEE Access 7: 123453–123462.
[6] [6] He, T., Liu, Y., Yu, Y., Zhao, Q. and Hu, Z. (2020). Application of deep convolutional neural network on feature extraction and detection of wood defects, Measurement 152: 107357.
[7] [7] Hu, G., Huang, J., Wang, Q., Li, J., Xu, Z. and Huang, X. (2019). Unsupervised fabric defect detection based on a deep convolutional generative adversarial network, Textile Research Journal 90(3–4): 247–270, DOI:10.1177/0040517519862880.
[8] [8] Jia, L., Chen, C., Xu, S. and Shen, J. (2020). Fabric defect inspection based on lattice segmentation and template statistics, Information Sciences 512: 964–984.
[9] [9] Kang, X. and Zhang, E. (2019). A universal defect detection approach for various types of fabrics based on the Elo-rating algorithm of the integral image, Textile Research Journal 89(21–22): 4766–4793.
[10] [10] Li, C., Gao, G., Liu, Z., Huang, D. and Xi, J. (2019a). Defect detection for patterned fabric images based on GHOG and low-rank decomposition, IEEE Access 7: 83962–83973.
[11] [11] Li, F., Yuan, L., Zhang, K. and Li, W. (2019b). A defect detection method for unpatterned fabric based on multidirectional binary patterns and the gray-level co-occurrence matrix, Textile Research Journal 90(7–8): 776–796, DOI: 10.1177/0040517519879904.
[12] [12] Li, Y., Zhao, W. and Pan, J. (2016). Deformable patterned fabric defect detection with fisher criterion-based deep learning, IEEE Transactions on Automation Science and Engineering 14(2): 1256–1264.
[13] [13] Lian, J., Jia, W., Zareapoor, M., Zheng, Y., Luo, R., Jain, D.K. and Kumar, N. (2019). Deep learning based small surface defect detection via exaggerated local variation-based generative adversarial network, IEEE Transactions on Industrial Informatics 16(2): 1343–1351.
[14] [14] Lizarraga-Morales, R.A., Correa-Tome, F.E., Sanchez-Yanez, R.E. and Cepeda-Negrete, J. (2019). On the use of binary features in a rule-based approach for defect detection on patterned textiles, IEEE Access 7: 18042–18049.
[15] [15] Luo, Q., Fang, X., Sun, Y., Liu, L., Ai, J., Yang, C. and Simpson, O. (2019). Surface defect classification for hot-rolled steel strips by selectively dominant local binary patterns, IEEE Access 7: 23488–23499.
[16] [16] MVTEC AD (2019). MVTEC Anomaly Detection Dataset, MVTec Software GmbH, Munich, https://www.mvtec.com/company/research/datasets/mvtec-ad.
[17] [17] Ouyang, W., Xu, B., Hou, J. and Yuan, X. (2019). Fabric defect detection using activation layer embedded convolutional neural network, IEEE Access 7: 70130–70140.
[18] [18] Sun, J., Wang, P., Luo, Y.-K. and Li, W. (2019). Surface defects detection based on adaptive multiscale image collection and convolutional neural networks, IEEE Transactions on Instrumentation and Measurement 68(12): 4787–4797.
[19] [19] Wang, H., Zhang, J., Tian, Y., Chen, H., Sun, H. and Liu, K. (2018). A simple guidance template-based defect detection method for strip steel surfaces, IEEE Transactions on Industrial Informatics 15(5): 2798–2809.
[20] [20] Wang, J., Li, Q., Gan, J., Yu, H. and Yang, X. (2019a). Surface defect detection via entity sparsity pursuit with intrinsic priors, IEEE Transactions on Industrial Informatics 16(1): 141–150.
[21] [21] Wang, R., Guo, Q., Lu, S. and Zhang, C. (2019b). Tire defect detection using fully convolutional network, IEEE Access 7: 43502–43510.
[22] [22] Wei, B., Hao, K., Tang, X.-s. and Ding, Y. (2019). A new method using the convolutional neural network with compressive sensing for fabric defect classification based on small sample sizes, Textile Research Journal 89(17): 3539–3555.
[23] [23] Xie, H., Zhang, Y. and Wu, Z. (2019). Fabric defect detection method combing image pyramid and direction template, IEEE Access 7: 182320–182334.
[24] [24] Yang, H., Chen, Y., Song, K. and Yin, Z. (2019). Multiscale feature-clustering-based fully convolutional autoencoder for fast accurate visual inspection of texture surface defects, IEEE Transactions on Automation Science and Engineering 16(3): 1450–1467.
[25] [25] Yu, H., Li, Q., Tan, Y., Gan, J., Wang, J., Geng, Y.-a. and Jia, L. (2018). A coarse-to-fine model for rail surface defect detection, IEEE Transactions on Instrumentation and Measurement 68(3): 656–666.
[26] [26] Zhang, Z., Wen, G. and Chen, S. (2019). Weld image deep learning-based on-line defects detection using convolutional neural networks for Al alloy in robotic arc welding, Journal of Manufacturing Processes 45: 208–216.