Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2021_31_3_a1, author = {Bingi, Kishore and Prusty, B Rajanarayan}, title = {Forecasting models for chaotic fractional-order oscillators using neural networks}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {387--398}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_3_a1/} }
TY - JOUR AU - Bingi, Kishore AU - Prusty, B Rajanarayan TI - Forecasting models for chaotic fractional-order oscillators using neural networks JO - International Journal of Applied Mathematics and Computer Science PY - 2021 SP - 387 EP - 398 VL - 31 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_3_a1/ LA - en ID - IJAMCS_2021_31_3_a1 ER -
%0 Journal Article %A Bingi, Kishore %A Prusty, B Rajanarayan %T Forecasting models for chaotic fractional-order oscillators using neural networks %J International Journal of Applied Mathematics and Computer Science %D 2021 %P 387-398 %V 31 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_3_a1/ %G en %F IJAMCS_2021_31_3_a1
Bingi, Kishore; Prusty, B Rajanarayan. Forecasting models for chaotic fractional-order oscillators using neural networks. International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 3, pp. 387-398. http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_3_a1/
[1] [1] Abdullah, S., Ismail, M., Ahmed, A.N. and Abdullah, A.M. (2019). Forecasting particulate matter concentration using linear and non-linear approaches for air quality decision support, Atmosphere 10(11): 667.
[2] [2] Azar, A.T. and Vaidyanathan, S. (2015). Chaos Modeling and Control Systems Design, Springer, Cham.
[3] [3] Bingi, K., Ibrahim, R., Karsiti, M.N., Hassam, S.M. and Harindran, V.R. (2019a). Frequency response based curve fitting approximation of fractional-order PID controllers, International Journal of Applied Mathematics and Computer Science 29(2): 311–326, DOI: 10.2478/amcs-2019-0023.
[4] [4] Bingi, K., Ibrahim, R., Karsiti, M.N., Hassan, S.M., Elamvazuthi, I. and Devan, A.M. (2019b). Design and analysis of fractional-order oscillators using SCILAB, 2019 IEEE Student Conference on Research and Development (SCOReD), Bandar Seri Iskandar, Malaysia, pp. 311–316.
[5] [5] Bingi, K., Ibrahim, R., Karsiti, M.N., Hassan, S.M. and Harindran, V.R. (2020). Fractional-order Systems and PID Controllers, Springer, Cham.
[6] [6] Bingi, K., Prusty, B.R., Kumra, A. and Chawla, A. (2021). Torque and temperature prediction for permanent magnet synchronous motor using neural networks, 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies, Shillong, Meghalaya, India, pp. 1–6.
[7] [7] Cao, J., Ma, C., Xie, H. and Jiang, Z. (2010). Nonlinear dynamics of Duffing system with fractional order damping, Journal of Computational and Nonlinear Dynamics 5(4), Article ID: 041012, DOI: 10.1115/1.4002092.
[8] [8] Cattani, C., Srivastava, H.M. and Yang, X.-J. (2015). Fractional Dynamics, De Gruyter, Warsaw.
[9] [9] Corinto, F., Forti, M. and Chua, L.O. (2021). Nonlinear Circuits and Systems with Memristors: Nonlinear Dynamics and Analogue Computing via the Flux-Charge Analysis Method, Springer, Cham.
[10] [10] De Oliveira, E.C. and Tenreiro Machado, J.A. (2014). A review of definitions for fractional derivatives and integral, Mathematical Problems in Engineering 2014, Article ID: 238459, DOI: 10.1155/2014/238459.
[11] [11] Giresse, T.A. and Crépin, K.T. (2017). Chaos generalized synchronization of coupled Mathieu–Van der Pol and coupled Duffing–Van der Pol systems using fractional order-derivative, Chaos, Solitons Fractals 98: 88–100, DOI: 10.1016/j.chaos.2017.03.012.
[12] [12] Huang, W., Li, Y. and Huang, Y. (2020). Deep hybrid neural network and improved differential neuroevolution for chaotic time series prediction, IEEE Access 8: 159552–159565, DOI: 10.1109/ACCESS.2020.3020801.
[13] [13] Kabziński, J. (2018). Synchronization of an uncertain Duffing oscillator with higher order chaotic systems, International Journal of Applied Mathematics and Computer Science 28(4): 625–634, DOI: 10.2478/amcs-2018-0048.
[14] [14] Kaczorek, T. and Sajewski, Ł. (2020). Pointwise completeness and pointwise degeneracy of fractional standard and descriptor linear continuous-time systems with different fractional orders, International Journal of Applied Mathematics and Computer Science 30(4): 641–647, DOI: 10.34768/amcs-2020-0047.
[15] [15] Kanchana, C., Siddheshwar, P. and Yi, Z. (2020). The effect of boundary conditions on the onset of chaos in Rayleigh–Bénard convection using energy-conserving Lorenz models, Applied Mathematical Modelling 88: 349–366, DOI: 10.1016/j.apm.2020.06.062.
[16] [16] Kuiate, G.F., Kingni, S.T., Tamba, V.K. and Talla, P.K. (2018). Three-dimensional chaotic autonomous Van der Pol–Duffing type oscillator and its fractional-order form, Chinese Journal of Physics 56(5): 2560–2573.
[17] [17] Li, Q. and Lin, R.-C. (2016). A new approach for chaotic time series prediction using recurrent neural network, Mathematical Problems in Engineering 2016, Article ID: 3542898, DOI: 10.1155/2016/3542898.
[18] [18] Liang, Y., Wang, G., Chen, G., Dong, Y., Yu, D. and Iu, H.H.-C. (2020). S-type locally active memristor-based periodic and chaotic oscillators, IEEE Transactions on Circuits and Systems I: Regular Papers 67(12): 5139–5152.
[19] [19] Lu, Z., Hunt, B.R. and Ott, E. (2018). Attractor reconstruction by machine learning, Chaos: An Interdisciplinary Journal of Nonlinear Science 28(6): 061104.
[20] [20] Lu, Z., Pathak, J., Hunt, B., Girvan, M., Brockett, R. and Ott, E. (2017). Reservoir observers: Model-free inference of unmeasured variables in chaotic systems, Chaos: An Interdisciplinary Journal of Nonlinear Science 27(4): 041102.
[21] [21] Luo, W. and Cui, Y. (2020). Signal denoising based on Duffing oscillators system, IEEE Access 8: 86554–86563, DOI: 10.1109/ACCESS.2020.2992503.
[22] [22] Mainardi, F. (2018). Fractional Calculus: Theory and Applications, Multidisciplinary Digital Publishing Institute, Basel.
[23] [23] Miwadinou, C., Monwanou, A. and Chabi Orou, J. (2015). Effect of nonlinear dissipation on the basin boundaries of a driven two-well modified Rayleigh–Duffing oscillator, International Journal of Bifurcation and Chaos 25(02): 1550024.
[24] [24] Pan, I. and Das, S. (2018). Evolving chaos: Identifying new attractors of the generalised Lorenz family, Applied Mathematical Modelling 57: 391–405, DOI: 10.1016/j.apm.2018.01.015.
[25] [25] Petras, I. (2010). Fractional-order memristor-based Chua’s circuit, IEEE Transactions on Circuits and Systems II: Express Briefs 57(12): 975–979.
[26] [26] Petráš, I. (2011). Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer Science Business Media, Berlin.
[27] [27] Salas, A.H. and El-Tantawy, S.A.E.-H. (2021). Analytical Solutions of Some Strong Nonlinear Oscillators, IntechOpen, London, DOI: 10.5772/intechopen.97677.
[28] [28] Shaik, N.B., Pedapati, S.R., Othman, A., Bingi, K. and Abd Dzubir, F.A. (2021). An intelligent model to predict the life condition of crude oil pipelines using artificial neural networks, Neural Computing and Applications, DOI: 10.1007/s00521-021-06116-1.
[29] [29] Sheela, K.G. and Deepa, S.N. (2013). Review on methods to fix number of hidden neurons in neural networks, Mathematical Problems in Engineering 2013, Article ID: 425740, DOI: 10.1155/2013/425740.
[30] [30] Shen, Y.-J.,Wei, P. and Yang, S.-P. (2014). Primary resonance of fractional-order Van der Pol oscillator, Nonlinear Dynamics 77(4): 1629–1642.
[31] [31] Smith, J.S., Wu, B. and Wilamowski, B.M. (2018). Neural network training with Levenberg–Marquardt and adaptable weight compression, IEEE Transactions on Neural Networks and Learning Systems 30(2): 580–587.
[32] [32] Sun, Z., Xu, W., Yang, X. and Fang, T. (2006). Inducing or suppressing chaos in a double-well Duffing oscillator by time delay feedback, Chaos, Solitons Fractals 27(3): 705–714.
[33] [33] Ueta, T. and Tamura, A. (2012). Bifurcation analysis of a simple 3D oscillator and chaos synchronization of its coupled systems, Chaos, Solitons Fractals 45(12): 1460–1468.
[34] [34] Vaidyanathan, S. and Azar, A.T. (2020). Backstepping Control of Nonlinear Dynamical Systems, Academic Press, Cambridge.
[35] [35] Vlachas, P.R., Byeon, W., Wan, Z.Y., Sapsis, T.P. and Koumoutsakos, P. (2018). Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2213): 20170844.
[36] [36] Wang, X., Jin, C., Min, X., Yu, D. and Iu, H.H.C. (2020). An exponential chaotic oscillator design and its dynamic analysis, IEEE/CAA Journal of Automatica Sinica 7(4): 1081–1086.
[37] [37] Wu, J.-L., Kashinath, K., Albert, A., Chirila, D., Prabhat and Xiao, H. (2020). Enforcing statistical constraints in generative adversarial networks for modeling chaotic dynamical systems, Journal of Computational Physics 406, Article ID: 109209, DOI: 10.1016/j.jcp.2019.109209.
[38] [38] Yang, Q., Sing-Long, C. and Reed, E. (2020). Rapid data-driven model reduction of nonlinear dynamical systems including chemical reaction networks using l1-regularization, Chaos: An Interdisciplinary Journal of Nonlinear Science 30(5): 053122.
[39] [39] Zang, X., Iqbal, S., Zhu, Y., Liu, X. and Zhao, J. (2016). Applications of chaotic dynamics in robotics, International Journal of Advanced Robotic Systems 13(2): 60.