Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2021_31_2_a9, author = {Siminski, Krzysztof}, title = {An outlier-robust neuro-fuzzy system for classification and regression}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {303--319}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_2_a9/} }
TY - JOUR AU - Siminski, Krzysztof TI - An outlier-robust neuro-fuzzy system for classification and regression JO - International Journal of Applied Mathematics and Computer Science PY - 2021 SP - 303 EP - 319 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_2_a9/ LA - en ID - IJAMCS_2021_31_2_a9 ER -
%0 Journal Article %A Siminski, Krzysztof %T An outlier-robust neuro-fuzzy system for classification and regression %J International Journal of Applied Mathematics and Computer Science %D 2021 %P 303-319 %V 31 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_2_a9/ %G en %F IJAMCS_2021_31_2_a9
Siminski, Krzysztof. An outlier-robust neuro-fuzzy system for classification and regression. International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 2, pp. 303-319. http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_2_a9/
[1] [1] Acı, M. and Avcı, M. (2016). Artificial neural network approach for atomic coordinate prediction of carbon nanotubes, Applied Physics A 122(631).
[2] [2] Acı, M. and Avcı, M. (2017). Reducing simulation duration of carbon nanotube using support vector regression method, Journal of the Faculty of Engineering and Architecture of Gazi University 32(3): 901–907.
[3] [3] Alcalá, R., Alcalá-Fdez, J., Casillas, J., Cordón, O. and Herrera, F. (2006). Hybrid learning models to get the interpretability-accuracy trade-off in fuzzy modeling, Soft Computing 10(9): 717–734.
[4] [4] Alonso, J.M. and Magdalena, L. (2011). Special issue on interpretable fuzzy systems, Information Sciences 181(20): 4331–4339.
[5] [5] Bartczuk, L., Przybyl, A. and Cpalka, K. (2016). A new approach to nonlinear modelling of dynamic systems based on fuzzy rules, International Journal of Applied Mathematics and Computer Science 26(3): 603–621, DOI: 10.1515/amcs-2016-0042.
[6] [6] Cpałka, K., Łapa, K., Przybył, A. and Zalasiński, M. (2014). A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects, Neurocomputing 135: 203–217.
[7] [7] Czogała, E. and Łęski, J. (2000). Fuzzy and Neuro-Fuzzy Intelligent Systems, Physica-Verlag, Heidelberg/New York.
[8] [8] Dave, R. and Krishnapuram, R. (1997). Robust clustering methods: A unified view, Fuzzy Systems, IEEE Transactions on 5(2): 270–293.
[9] [9] de Souza, P.V.C. (2020). Fuzzy neural networks and neuro-fuzzy networks: A review the main techniques and applications used in the literature, Applied Soft Computing 92: 106275.
[10] [10] Dovžan, D. and Škrjanc, I. (2011). Recursive fuzzy c-means clustering for recursive fuzzy identification of time-varying processes, ISA Transactions 50(2): 159–169.
[11] [11] Dunn, J.C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact, well separated clusters, Journal Cybernetics 3(3): 32–57.
[12] [12] D’Urso, P. and Leski, J.M. (2020). Fuzzy clustering of fuzzy data based on robust loss functions and ordered weighted averaging, Fuzzy Sets and Systems 389: 1–28.
[13] [13] Evsukoff, A.G., Galichet, S., de Lima, B.S. and Ebecken, N.F. (2009). Design of interpretable fuzzy rule-based classifiers using spectral analysis with structure and parameters optimization, Fuzzy Sets and Systems 160(7): 857–881.
[14] [14] Frank, A. and Asuncion, A. (2019). UCI machine learning repository, http://archive.ics.uci.edu/ml.
[15] [15] Geng, Y., Li, Q., Zheng, R., Zhuang, F. and He, R. (2018). RECOME: A new density-based clustering algorithm using relative KNN kernel density, Information Sciences 436–437: 13–30.
[16] [16] Grzegorzewski, P., Hryniewicz, O. and Romaniuk, M. (2020). Flexible resampling for fuzzy data, International Journal of Applied Mathematics and Computer Science 30(2): 281–297, DOI: 10.34768/amcs-2020-0022.
[17] [17] Haberman, S.J. (1976). Generalized residuals for log-linear models, Proceedings of the 9th International Biometrics Conference, Boston, USA, pp. 104–122.
[18] [18] Harifi, S., Khalilian, M., Mohammadzadeh, J. and Ebrahimnejad, S. (2020). Optimizing a neuro-fuzzy system based on nature-inspired emperor penguins colony optimization algorithm, IEEE Transactions on Fuzzy Systems 28(6): 1110–1124.
[19] [19] Hathaway, R.J., Bezdek, J.C. and Hu, Y. (2000). Generalized fuzzy c-means clustering strategies using lp norm distances, IEEE Transactions on Fuzzy Systems 8(5): 576–582.
[20] [20] Hekimoglu, S., Erdogan, B. and Erenoglu, R. (2015). A new outlier detection method considering outliers as model errors, Experimental Techniques 39(1): 57–68.
[21] [21] Hekimoglu, S. and Koch, K.R. (2000). How can reliability of the test for outliers be measured?, Allgemeine Vermessungsnachrichten 7: 247–253.
[22] [22] Jakubek, S. and Keuth, N. (2006). A local neuro-fuzzy network for high-dimensional models and optimalization, Engineering Applications of Artificial Intelligence 19(6): 705–717.
[23] [23] Jang, J.-S.R. (1993). ANFIS: Adaptive-network-based fuzzy inference system, IEEE Transactions on Systems, Man, and Cybernetics 23(3): 665–684.
[24] [24] Jiang, Y. and Yin, S. (2019). Recent advances in key-performance-indicator oriented prognosis and diagnosis with a Matlab toolbox: DB-KIT, IEEE Transactions on Industrial Informatics 15(5): 2849–2858.
[25] [25] Jiang, Y., Yin, S. and Kaynak, O. (2018). Data-driven monitoring and safety control of industrial cyber-physical systems: Basics and beyond, IEEE Access 6: 47374–47384.
[26] [26] Johnson, B., Tateishi, R. and Hoan, N. (2013). A hybrid pansharpening approach and multiscale object-based image analysis for mapping diseased pine and oak trees, International Journal of Remote Sensing 34(20): 6969–6982.
[27] [27] Kaya, H., Tüfekci, P. and Gürgen, S.F. (2012). Local and global learning methods for predicting power of a combined gas and steam turbine, Proceedings of the International Conference on Emerging Trends in Computer and Electronics Engineering (ICETCEE 2012), Dubai, UAE, pp. 13–18.
[28] [28] Keith, M.J., Jameson, A., van Straten, W., Bailes, M., Johnston, S., Kramer, M., Possenti, A., Bates, S.D., Bhat, N.D.R., Burgay, M., Burke-Spolaor, S., D’Amico, N., Levin, L., McMahon, P.L., Milia, S. and Stappers, B.W. (2010). The high time resolution universe pulsar survey. I: System configuration and initial discoveries, Monthly Notices of the Royal Astronomical Society 409(2): 619–627.
[29] [29] Kłopotek, R., Kłopotek, M. and Wierzchoń, S. (2020). A feasible k-means kernel trick under non–Euclidean feature space, International Journal of Applied Mathematics and Computer Science 30(4): 703–715, DOI: 10.34768/amcs-2020-0052.
[30] [30] Krishnapuram, R. and Keller, J. (1993). A possibilistic approach to clustering, IEEE Transactions on Fuzzy Systems 1(2): 98–110.
[31] [31] Latecki, L.J., Lazarevic, A. and Pokrajac, D. (2007). Outlier detection with kernel density functions, in P. Perner (Ed.), Machine Learning and Data Mining in Pattern Recognition, Springer, Berlin/Heidelberg, pp. 61–75.
[32] [32] Lehmann, R. (2013). 3σ-Rule for outlier detection from the viewpoint of geodetic adjustment, Journal of Surveying Engineering 139(4): 157–165.
[33] [33] Leski, J. and Kotas, M. (2015). On robust fuzzy c-regression models, Fuzzy Sets and Systems 279: 112–129.
[34] [34] Leski, J.M. (2014). Fuzzy c-ordered-means clustering, Fuzzy Sets and Systems 286: 114–133.
[35] [35] Leski, J.M. (2015). Fuzzy (c + p)-means clustering and its application to a fuzzy rule-based classifier: Towards good generalization and good interpretability, IEEE Transactions on Fuzzy Systems 23(4): 802–812.
[36] [36] Leski, J.M. and Kotas, M.P. (2018). Linguistically defined clustering of data, International Journal of Applied Mathematics and Computer Science 28(3): 545–557, DOI: 10.2478/amcs-2018-0042.
[37] [37] Leys, C., Ley, C., Klein, O., Bernard, P. and Licata, L. (2013). Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median, Journal of Experimental Social Psychology 49(4): 764–766.
[38] [38] Liang, X., Zou, T., Guo, B., Li, S., Zhang, H., Zhang, S., Huang, H. and Chen, S.X. (2015). Assessing Beijing’s PM2.5 pollution: Severity, weather impact, apec and winter heating, Proceedings of the Royal Society A 471(2182): 257–276.
[39] [39] Lyon, R.J., Stappers, B.W., Cooper, S., Brooke, J.M. and Knowles, J.D. (2016). Fifty years of pulsar candidate selection: From simple filters to a new principled real-time classification approach, Monthly Notices of the Royal Astronomical Society 459(1): 1104–1123.
[40] [40] Mamdani, E.H. and Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller, International Journal of Man-Machine Studies 7(1): 1–13.
[41] [41] Matthews, S.G., Gongora, M.A. and Hopgood, A.A. (2013). Evolutionary algorithms and fuzzy sets for discovering temporal rules, International Journal of Applied Mathematics and Computer Science 23(4): 855–868, DOI: 10.2478/amcs-2013-0064.
[42] [42] Nowicki, R. (2006). Rough-neuro-fuzzy system with MICOG defuzzification, 2006 IEEE International Conference on Fuzzy Systems, Vancouver, Canada, pp. 1958–1965.
[43] [43] Olson, C.C., Judd, K.P. and Nichols, J.M. (2018). Manifold learning techniques for unsupervised anomaly detection, Expert Systems with Applications 91: 374–385.
[44] [44] Otte, C. (Ed.) (2013). Safe and interpretable machine learning: A methodological review, in C. Moewes and A. Nürnberger (Eds), Computational Intelligence in Intelligent Data Analysis, Springer, Berlin/Heidelberg, pp. 111–122.
[45] [45] Piegat, A. and Dobryakova, L. (2020). A decomposition approach to type 2 interval arithmetic, International Journal of Applied Mathematics and Computer Science 30(1): 185–201, DOI: 10.34768/amcs-2020-0015.
[46] [46] Reichenbach, H. (1935). Wahrscheinlichkeitslogik, Erkenntnis 5: 37–43.
[47] [47] Riid, A. (2002). Transparent Fuzzy Systems: Modelling and Control, PhD dissertation, Tallinn Technical University, Tallinn.
[48] [48] Rocha Neto, A.R. and Barreto, G.A. (2009). On the application of ensembles of classifiers to the diagnosis of pathologies of the vertebral column: A comparative analysis, IEEE Latin America Transactions 7(4): 487–496.
[49] [49] Seresht, N.G. and Fayek, A.R. (2020). Neuro-fuzzy system dynamics technique for modeling construction systems, Applied Soft Computing 93: 106400.
[50] [50] Sholla, S., Mir, R.N. and Chishti, M.A. (2020). A neuro fuzzy system for incorporating ethics in the Internet of things, Journal of Ambient Intelligence and Humanized Computing 12: 1487–1501.
[51] [51] Sikora, M. and Krzykawski, D. (2005). Application of data exploration methods in analysis of carbon dioxide emission in hard-coal mines, dewater pump stations, Mechanizacja i Automatyzacja Górnictwa 413(6): 57–67.
[52] [52] Siminski, K. (2008). Neuro-fuzzy system with hierarchical domain partition, Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation (CIMCA 2008), Vienna, Austria, pp. 392–397.
[53] [53] Siminski, K. (2009). Patchwork neuro-fuzzy system with hierarchical domain partition, in M. Kurzyński and M. Woźniak (Eds), Computer Recognition Systems 3, Advances in Intelligent and Soft Computing, Vol. 57, Springer-Verlag, Berlin/Heidelberg, pp. 11–18.
[54] [54] Simiński, K. (2010). Rule weights in a neuro-fuzzy system with a hierarchical domain partition, International Journal of Applied Mathematics and Computer Science 20(2): 337–347, DOI: 10.2478/v10006-010-0025-3.
[55] [55] Simiński, K. (2012). Neuro-rough-fuzzy approach for regression modelling from missing data, International Journal of Applied Mathematics and Computer Science 22(2): 461–476, DOI: 10.2478/v10006-012-0035-4.
[56] [56] Siminski, K. (2014). Neuro-fuzzy system based kernel for classification with support vector machines, in A. Gruca et al. (Eds), Man–Machine Interactions 3, Springer International Publishing, Cham, pp. 415–422.
[57] [57] Siminski, K. (2015). Rough subspace neuro-fuzzy system, Fuzzy Sets and Systems 269: 30–46.
[58] [58] Siminski, K. (2016). Memetic neuro-fuzzy system with Big-Bang-Big-Crunch optimisation, in A. Gruca et al. (Eds), Man–Machine Interactions 4, Springer International Publishing, Cham, pp. 583–592.
[59] [59] Siminski, K. (2017a). Fuzzy weighted c-ordered means clustering algorithm, Fuzzy Sets and Systems 318: 1–33.
[60] [60] Siminski, K. (2017b). Interval type-2 neuro-fuzzy system with implication-based inference mechanism, Expert Systems with Applications 79C: 140–152.
[61] [61] Siminski, K. (2017c). Robust subspace neuro-fuzzy system with data ordering, Neurocomputing 238: 33–43.
[62] [62] Siminski, K. (2019). NFL—Free library for fuzzy and neuro-fuzzy systems, in S. Kozielski et al. (Eds), Beyond Databases, Architectures and Structures: Paving the Road to Smart Data Processing and Analysis, Springer International Publishing, Cham, pp. 139–150.
[63] [63] Siminski, K. (2020). FIT2COMIn—Robust clustering algorithm for incomplete data, in A. Gruca et al. (Eds), Man–Machine Interactions 6, Springer International Publishing, Cham, pp. 99–110.
[64] [64] Škrjanc, I., Iglesias, J.A., Sanchis, A., Leite, D., Lughofer, E. and Gomide, F. (2019). Evolving fuzzy and neuro-fuzzy approaches in clustering, regression, identification, and classification: A survey, Information Sciences 490: 344–368.
[65] [65] Słowik, A., Cpałka, K. and Łapa, K. (2020). Multipopulation nature-inspired algorithm (MNIA) for the designing of interpretable fuzzy systems, IEEE Transactions on Fuzzy Systems 28(6): 1125–1139.
[66] [66] Sugeno, M. and Kang, G.T. (1988). Structure identification of fuzzy model, Fuzzy Sets and Systems 28(1): 15–33.
[67] [67] Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its application to modeling and control, IEEE Transactions on Systems, Man and Cybernetics 15(1): 116–132.
[68] [68] Tang, B. and He, H. (2017). A local density-based approach for outlier detection, Neurocomputing 241: 171–180.
[69] [69] Timm, H., Borgelt, C., Döring, C. and Kruse, R. (2004). An extension to possibilistic fuzzy cluster analysis, Fuzzy Sets and Systems 147: 3–16.
[70] [70] Tüfekci, P. (2014). Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods, International Journal of Electrical Power Energy Systems 60: 126–140.
[71] [71] Yager, R.R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking, IEEE Transactions on Systems, Man, and Cybernetics 18(1): 183–190.
[72] [72] Yang, P., Zhu, Q. and Zhong, X. (2009). Subtractive clustering based RBF neural network model for outlier detection, Journal of Computers 4(8): 755–762.
[73] [73] Yeh, I.-C., Yang, K.-J. and Ting, T.-M. (2009). Knowledge discovery on RFM model using Bernoulli sequence, Expert Systems with Applications 36(3): 5866–5871.
[74] [74] Youden, W.J. (1950). Index for rating diagnostic tests, Cancer 3(1): 32–35.
[75] [75] Zadeh, L.A. (1973). Outline of a new approach to the analysis of complex systems and decision processes, IEEE Transactions on Systems, Man, and Cybernetics SMC-3(1): 28–44.