A mixed type boundary-value problem related to the electrostatics of cold plasma jet reactors based on dielectric barrier discharge
International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 2, pp. 233-245.

Voir la notice de l'article provenant de la source Library of Science

A semi-analytical model is presented for the determination of the electric field in reactors used for cold atmospheric pressure plasma (CAPP) jet production, based on the concept of dielectric barrier discharge (DBD). These systems are associated with various applications in contemporary engineering, ranging from material processing to biomedicine, and at the same time they provide many challenges for fundamental research. Here, we consider a simplified system configuration of a single driven electrode, surrounding a thin dielectric tube, which does not contribute to the electric field, since the potential variation is immediate due to its negligible size. By employing the cylindrical coordinate system that perfectly fits the present plasma jet reactor, we separate the area of electric activity into three distinct domains according to the imposed external conditions, while our analysis is restricted to the electrostatic limit of Maxwell’s equations. To this end, cylindrical harmonic field expansions are used for the potential, which produce the corresponding electric fields in each subdomain. Due to the imposed mixed-type boundary value problem, additional linear terms are incorporated, leading to three possible analytical solutions of the physical problem under consideration. The efficiency of the method is demonstrated by comparing the final formulae with a numerical solution, followed by the relevant discussion.
Keywords: DBD, dielectric barrier discharge, cold plasma jet, reactor, mixed type boundary value problem, electrostatic potential theory
@article{IJAMCS_2021_31_2_a3,
     author = {Vafeas, Panayiotis and Papadopoulos, Polycarpos K. and Svarnas, Panagiotis},
     title = {A mixed type boundary-value problem related to the electrostatics of cold plasma jet reactors based on dielectric barrier discharge},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {233--245},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_2_a3/}
}
TY  - JOUR
AU  - Vafeas, Panayiotis
AU  - Papadopoulos, Polycarpos K.
AU  - Svarnas, Panagiotis
TI  - A mixed type boundary-value problem related to the electrostatics of cold plasma jet reactors based on dielectric barrier discharge
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2021
SP  - 233
EP  - 245
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_2_a3/
LA  - en
ID  - IJAMCS_2021_31_2_a3
ER  - 
%0 Journal Article
%A Vafeas, Panayiotis
%A Papadopoulos, Polycarpos K.
%A Svarnas, Panagiotis
%T A mixed type boundary-value problem related to the electrostatics of cold plasma jet reactors based on dielectric barrier discharge
%J International Journal of Applied Mathematics and Computer Science
%D 2021
%P 233-245
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_2_a3/
%G en
%F IJAMCS_2021_31_2_a3
Vafeas, Panayiotis; Papadopoulos, Polycarpos K.; Svarnas, Panagiotis. A mixed type boundary-value problem related to the electrostatics of cold plasma jet reactors based on dielectric barrier discharge. International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 2, pp. 233-245. http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_2_a3/

[1] [1] Athanasopoulos, D.K., Svarnas, P. and Gerakis, A. (2019). Cold plasma bullet influence on the water contact angle of human skin surface, Journal of Electrostatics 102(103378): 1–12.

[2] [2] Athanasopoulos, D., Svarnas, P., Ladas, S., Kennou, S. and Koutsoukos, P. (2018). On the wetting properties of human stratum corneum epidermidis surface exposed to cold atmospheric-pressure pulsed plasma, Applied Physics Letters 112(213703): 1–5.

[3] [3] Bartecki, K. (2020). Approximate state-space and transfer function models for 2x2 linear hyperbolic systems with collocated boundary inputs, International Journal of Applied Mathematics and Computer Science 30(3): 475–491, DOI: 10.34768/amcs-2020-0035.

[4] [4] Clément, F., Svarnas, P., Marlin, L., Gkelios, A. and Held, B. (2011). Atmospheric-pressure plasma microjet of argon-nitrogen mixtures directed by dielectric flexible tubes, IEEE Transactions on Plasma Science 39: 2364–2365.

[5] [5] Gazeli, K., Svarnas, P., Held, B., Marlin, L. and Clément, F. (2015). Possibility of controlling the chemical pattern of He and Ar “guided streamers” by means of N2 or O2 additives, Journal of Applied Physics 117(093302): 1–13.

[6] [6] Gazeli, K., Svarnas, P., Vafeas, P., Papadopoulos, P.K., Gkelios, A. and Clément, F. (2013). Investigation on streamers propagating into a helium jet in air at atmospheric pressure: Electrical and optical emission analysis, Journal of Applied Physics 114(103304): 1–12.

[7] [7] Gkelios, A., Svarnas, P., Clément, F. and Spyrou, N. (2011). Guided propagation of excited species produced by microjet plasma, IEEE Transactions on Plasma Science 39: 2296–2297.

[8] [8] Gugat, M. and Wintergerst, D. (2018). Transient flow in gas networks: Traveling waves, International Journal of Applied Mathematics and Computer Science 28(2): 341–348, DOI: 10.2478/amcs-2018-0025.

[9] [9] Hobson, E. (1965). The Theory of Spherical and Ellipsoidal Harmonics, Chelsea Publishing Company, New York.

[10] [10] Jackson, J.D. (1998). Classical Electrodynamics, 3rd Edn, John Wiley Sons, New York.

[11] [11] Logothetis, D.K., Papadopoulos, P.K., Svarnas, P. and Vafeas, P. (2016). Numerical simulation of the interaction between helium jet flow and an atmospheric-pressure “plasma jet”, Computers and Fluids 140: 11–18.

[12] [12] Maksimov, V.I. and Mordukhovich, B.S. (2017). Feedback design of differential equations of reconstruction for second-order distributed parameter systems, International Journal of Applied Mathematics and Computer Science 27(3): 467–475, DOI: 10.1515/amcs-2017-0032.

[13] [13] Moon, P. and Spencer, D.E. (1971). Field Theory Handbook, Springer, Berlin/Heidelberg.

[14] [14] Papadopoulos, P.K., Athanasopoulos, D., Sklias, K., Svarnas, P., Mourousias, N., Vratsinis, K. and Vafeas, P. (2019). Generic residual charge based model for the interpretation of the electrohydrodynamic effects in cold atmospheric pressure plasmas, Plasma Sources Science and Technology 28(065005): 1–17.

[15] [15] Papadopoulos, P.K., Vafeas, P., Svarnas, P., Gazeli, K., Hatzikonstantinou, P.M., Gkelios, A. and Clément, F. (2014). Interpretation of the gas flow field modification induced by guided streamer (‘plasma bullet’) propagation, Journal of Physics D: Applied Physics 47(425203): 1–16.

[16] [16] Popov, N., Babaeva, N. and Naidis, G. (2019). Recent advances in the chemical kinetics of non-equilibrium plasmas, Journal of Physics D: Applied Physics 52(160301): 1–6.

[17] [17] Rabenstein, R. and Trautmann, L. (2003). Towards a framework for continuous and discrete multidimensional systems, International Journal of Applied Mathematics and Computer Science 13(1): 73–85.

[18] [18] Sneddon, I.N. (1966). Mixed Boundary Value Problems in Potential Theory, North-Holland Publishing Company, New York.

[19] [19] Svarnas, P., Gazeli, K., Gkelios, A., Amanatides, E. and Mataras, D. (2018a). On the reliable probing of discrete ‘plasma bullet’ propagation, Measurement Science and Technology 29(045016): 1–9.

[20] [20] Svarnas, P., Matrali, S.H., Gazeli, K., Aleiferis, S., Clément, F. and Antimisiaris, S.G. (2012). Atmospheric-pressure guided streamers for liposomal membrane disruption, Applied Physics Letters 101(264103): 1–5.

[21] [21] Svarnas, P., Matrali, S.H., Gazeli, K. and Antimisiaris, S.G. (2015). Assessment of atmospheric-pressure guided streamer (plasma bullet) influence on liposomes with different composition and physicochemical properties, Plasma Processes and Polymers 12: 655–665.

[22] [22] Svarnas, P., Papadopoulos, P.K., Athanasopoulos, D., Sklias, K., Gazeli, K. and Vafeas, P. (2018b). Parametric study of thermal effects in a capillary dielectric-barrier discharge related to plasma jet production: Experiments and numerical modelling, Journal of Applied Physics 124(064902): 1–13.

[23] [23] Svarnas, P., Papadopoulos, P.K., Vafeas, P., Gkelios, A., Clément, F. and Mavon, A. (2014). Influence of atmospheric pressure guided streamers (plasma bullets) on the working gas pattern in air, IEEE Transactions on Plasma Science 42: 2430–2431.

[24] [24] Svarnas, P., Spiliopoulou, A., Koutsoukos, P.G., Gazeli, K. and Anastassiou, E.D. (2019). Acinetobacter baumannii deactivation by means of DBD-based helium plasma jet, Plasma 2: 77–90.

[25] [25] Vafeas, P., Papadopoulos, P.K., Vafakos, G.P., Svarnas, P. and Doschoris, M. (2020). Modelling the electric field in reactors yielding cold atmospheric–pressure plasma jets, Scientific Reports 10(5694): 1–15.

[26] [26] Weller, H. G., Tabor, G., Jasak, H. and Fureby, C. (1998). A tensorial approach to computational continuum mechanics using object-oriented techniques, Computers in Physics 12(6): 620–631.