Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2021_31_2_a12, author = {Devidas, S. and Rao Y.V., Subba and Rekha, N. Rukma}, title = {A decentralized group signature scheme for privacy protection in a blockchain}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {353--364}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_2_a12/} }
TY - JOUR AU - Devidas, S. AU - Rao Y.V., Subba AU - Rekha, N. Rukma TI - A decentralized group signature scheme for privacy protection in a blockchain JO - International Journal of Applied Mathematics and Computer Science PY - 2021 SP - 353 EP - 364 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_2_a12/ LA - en ID - IJAMCS_2021_31_2_a12 ER -
%0 Journal Article %A Devidas, S. %A Rao Y.V., Subba %A Rekha, N. Rukma %T A decentralized group signature scheme for privacy protection in a blockchain %J International Journal of Applied Mathematics and Computer Science %D 2021 %P 353-364 %V 31 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_2_a12/ %G en %F IJAMCS_2021_31_2_a12
Devidas, S.; Rao Y.V., Subba; Rekha, N. Rukma. A decentralized group signature scheme for privacy protection in a blockchain. International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 2, pp. 353-364. http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_2_a12/
[1] [1] Agarwal, A. and Saraswat, R. (2013). A survey of group signature technique, its applications and attacks, International Journal of Engineering and Innovative Technology 2(10): 28–35.
[2] [2] Al Jawaheri, H., Al Sabah, M., Boshmaf, Y. and Erbad, A. (2020). Deanonymizing tor hidden service users through bitcoin transactions analysis, Computers Security 89: 101684.
[3] [3] Androulaki, E., Karame, G. O., Roeschlin, M., Scherer, T. and Capkun, S. (2013). Evaluating user privacy in bitcoin, International Conference on Financial Cryptography and Data Security, Okinawa, Japan, pp. 34–51.
[4] [4] Ateniese, G., Song, D. and Tsudik, G. (2002). Quasi-efficient revocation of group signatures, International Conference on Financial Cryptography, Southampton, Bermuda, pp. 183–197.
[5] [5] Bellare, M., Micciancio, D. and Warinschi, B. (2003). Foundations of group signatures: Formal definitions, simplified requirements, and a construction based on general assumptions, International Conference on the Theory and Applications of Cryptographic Techniques, Warsaw, Poland, pp. 614–629.
[6] [6] Blass, E.-O. and Kerschbaum, F. (2018). Strain: A secure auction for blockchains, European Symposium on Research in Computer Security, Barcelona, Spain, pp. 87–110.
[7] [7] Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A. and Felten, E.W. (2015). SOK: Research perspectives and challenges for bitcoin and cryptocurrencies, 2015 IEEE Symposium on Security and Privacy, San Jose, USA, pp. 104–121.
[8] [8] Chaum, D. and Van Heyst, E. (1991). Group signatures, Workshop on the Theory and Application of of Cryptographic Techniques, Brighton, UK, pp. 257–265.
[9] [9] Chen, L. and Pedersen, T.P. (1994). New group signature schemes, Workshop on the Theory and Application of Cryptographic Techniques, Perugia, Italy, pp. 171–181.
[10] [10] Chen, Y.-H., Chen, S.-H. and Lin, I.-C. (2018). Blockchain based smart contract for bidding system, 2018 IEEE International Conference on Applied System Invention (ICASI), Chiba, Japan, pp. 208–211.
[11] [11] Conti, M., Kumar, E.S., Lal, C. and Ruj, S. (2018). A survey on security and privacy issues of bitcoin, IEEE Communications Surveys Tutorials 20(4): 3416–3452.
[12] [12] Feng, Q., He, D., Zeadally, S., Khan, M.K. and Kumar, N. (2019). A survey on privacy protection in blockchain system, Journal of Network and Computer Applications 126(8): 45–58.
[13] [13] Fernandez-Vazquez, S., Rosillo, R., De La Fuente, D. and Priore, P. (2019). Blockchain in fintech: A mapping study, Sustainability 11(22): 6366.
[14] [14] Galal, H.S. and Youssef, A.M. (2018). Verifiable sealed-bid auction on the Ethereum blockchain, International Conference on Financial Cryptography and Data Security, Nieuwpoort, Curaçao, pp. 265–278.
[15] [15] Gao, W., Hatcher, W.G. and Yu, W. (2018). A survey of blockchain: Techniques, applications, and challenges, 2018 27th International Conference on Computer Communication and Networks (ICCCN), Hangzhou, China, pp. 1–11.
[16] [16] Jouini, M., Rabai, L.B.A. and Aissa, A.B. (2014). Classification of security threats in information systems, Procedia Computer Science 32: 489–496.
[17] [17] Karame, G. (2016). On the security and scalability of bitcoin’s blockchain, Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, pp. 1861–1862.
[18] [18] Kim, H.-J., Lim, J.I. and Lee, D.H. (2000). Efficient and secure member deletion in group signature schemes, International Conference on Information Security and Cryptology, Seoul, Korea, pp. 150–161.
[19] [19] Kobusińska, A., Brzeziński, J., Boroń, M., Inatlewski, Ł., Jabczyński, M. and Maciejewski, M. (2016). A branch hash function as a method of message synchronization in anonymous P2P conversations, International Journal of Applied Mathematics and Computer Science 26(2): 479–493, DOI: 10.1515/amcs-2016-0034.
[20] [20] Kong, W., Jiang, B., Fan, Q., Zhu, L. and Wei, X. (2018). Personal identification based on brain networks of EEG signals, International Journal of Applied Mathematics and Computer Science 28(4): 745–757, DOI: 10.2478/amcs-2018-0057.
[21] [21] Kosba, A., Miller, A., Shi, E., Wen, Z. and Papamanthou, C. (2016). Hawk: The blockchain model of cryptography and privacy-preserving smart contracts, 2016 IEEE Symposium on Security and Privacy (SP), San Jose, USA, pp. 839–858.
[22] [22] Krishna, V. (2009). Auction Theory, Academic Press, San Diego.
[23] [23] Lafourcade, P., Nopere, M., Picot, J., Pizzuti, D. and Roudeix, E. (2019). Security analysis of auctionity: A blockchain based e-auction, International Symposium on Foundations Practice of Security FPS 19, Toulouse, France, pp. 290–307.
[24] [24] Lee, C.-C., Ho, P.-F. and Hwang, M.-S. (2009). A secure e-auction scheme based on group signatures, Information Systems Frontiers 11(3): 335–343.
[25] [25] Li, S., Zhang, Y., Wang, Y. and Sun, W. (2019). Utility optimization–based bandwidth allocation for elastic and inelastic services in peer-to-peer networks, International Journal of Applied Mathematics and Computer Science 29(1): 111–123, DOI: 10.2478/amcs-2019-0009.
[26] [26] Li, X., Jiang, P., Chen, T., Luo, X. andWen, Q. (2017). A survey on the security of blockchain systems, Future Generation Computer Systems 107: 841–853.
[27] [27] Nakamoto, S. and Bitcoin, A. (2008). A peer-to-peer electronic cash system, https://bitcoin.org/bitcoin.pdf.
[28] [28] Reid, F. and Harrigan, M. (2013). An analysis of anonymity in the bitcoin system, Security and Privacy in Social Networks, Boston, USA, pp. 197–223.
[29] [29] Ron, D. and Shamir, A. (2013). Quantitative analysis of the full bitcoin transaction graph, International Conference on Financial Cryptography and Data Security, Okinawa, Japan, pp. 6–24.
[30] [30] Sánchez, D.C. (2018). Raziel: Private and verifiable smart contracts on blockchains, arXiv: 1807.09484.
[31] [31] Sun, Y., Sun, Y., Luo, M., Gu, L., Zheng, S. and Yang, Y. (2013). Comment on Lee et al.’s group signature and e-auction scheme, Information Systems Frontiers 15(1): 133–139.
[32] [32] Tsai, C.-Y., Ho, P.-F. and Hwang, M.-S. (2018). A secure group signature scheme., IJ Network Security 20(2): 201–205.
[33] [33] Wang, X., Zha, X., Ni, W., Liu, R.P., Guo, Y.J., Niu, X. and Zheng, K. (2019). Survey on blockchain for internet of things, Computer Communications 136: 10–29.
[34] [34] Zhang, R., Xue, R. and Liu, L. (2019). Security and privacy on blockchain, ACM Computing Surveys 52(3): 1–34.
[35] [35] Zheng, H., Wu, Q., Xie, J., Guan, Z., Qin, B. and Gu, Z. (2020). An organization-friendly blockchain system, Computers Security 88: 101598.