Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2021_31_2_a1, author = {Grabowski, Piotr}, title = {Comparison of direct and perturbation approaches to analysis of infinite-dimensional feedback control systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {195--218}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_2_a1/} }
TY - JOUR AU - Grabowski, Piotr TI - Comparison of direct and perturbation approaches to analysis of infinite-dimensional feedback control systems JO - International Journal of Applied Mathematics and Computer Science PY - 2021 SP - 195 EP - 218 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_2_a1/ LA - en ID - IJAMCS_2021_31_2_a1 ER -
%0 Journal Article %A Grabowski, Piotr %T Comparison of direct and perturbation approaches to analysis of infinite-dimensional feedback control systems %J International Journal of Applied Mathematics and Computer Science %D 2021 %P 195-218 %V 31 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_2_a1/ %G en %F IJAMCS_2021_31_2_a1
Grabowski, Piotr. Comparison of direct and perturbation approaches to analysis of infinite-dimensional feedback control systems. International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 2, pp. 195-218. http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_2_a1/
[1] [1] Adler, M., Bombieri, M. and Engel, K.-J. (2017). Perturbation of analytic semigroups and applications to partial differential equations, Journal of Evolution Equations 17(4): 1183–1208.
[2] [2] Arendt, W., Batty, C., Hieber, M. and Neubrander, F. (2011). Vector-Valued Laplace Transforms and Cauchy Problems, Springer-Basel AG, Basel.
[3] [3] Ball, J. (1977). Strongly continuous semigroups, weak solutions and the variation of constants formula, Proceedings of the American Mathematical Society 63(2): 370–373.
[4] [4] Bouldin, R. (1971). The numerical range of a product, Journal of Mathematical Analysis and Applications 33(1): 243–263.
[5] [5] Crouzeix, M. (2008). A functional calculus based on the numerical range: Applications, Linear and Multilinear Algebra 56(1–2): 81–103.
[6] [6] Curtain, R. (1984). Spectral systems, International Journal of Control 39(4): 657–666.
[7] [7] Curtain, R. and Zwart, H. (1995). An Introduction to Infinite-Dimensional Linear Systems Theory, Springer, New York.
[8] [8] Deckard, D., Foias, C., and Pearcy, C. (1979). Compact operators with root vectors that span, Proceedings of the American Mathematical Society 76(1): 101–106.
[9] [9] DeLaubenfels, R. (1988). Inverses of generators, Proceedings of the American Mathematical Society 104(2): 443–448.
[10] [10] Dunford, N. and Schwartz, J. (1971). Linear Operators. Part III: Spectral Operators, Wiley-Interscience, New York.
[11] [11] Engel, K.-J. and Nagel, A. (2000). One-Parameter Semigroups, Springer, New York.
[12] [12] Furuta, T. (1977). Relations between generalized growth conditions and several classes of convexoid operators, Canadian Journal of Mathematics 29(1–2): 1010–1030.
[13] [13] Furuta, T. (2001). Invitation to Linear Operators. From Matrices to Bounded Linear Operators on a Hilbert Space, CRC Press, London.
[14] [14] Gohberg, I. and Krein, M. (1965). Introduction to the Theory of Linear Non-selfadjoint Operators, Nauka, Moscow, (in Russian).
[15] [15] Grabowski, P. (1990). On spectral-Lyapunov approach to parametric optimization of distributed parameter systems, IMA Journal of Mathematical Control and Information 7(4): 317–338.
[16] [16] Grabowski, P. (1995). Admissibility of observation functionals, International Journal of Control 62(5): 1161–1173.
[17] [17] Grabowski, P. (1999). Lecture Notes on Optimal Control Systems, AGH University Press, Krak´ow, http://home.agh.edu.pl/˜pgrab/grabowski_files/lecturedition2/newlecture.xml.
[18] [18] Grabowski, P. (2006). Well-posedness and stability analysis of hybrid feedback systems using Shkalikov’s theory, Opuscula Mathematica 26(1): 43–95.
[19] [19] Grabowski, P. (2017). Some modifications of theWeiss–Staffans perturbation theorem, International Journal of Robust and Nonlinear Control 27(7): 1094–1121.
[20] [20] Grabowski, P. and Callier, F. (1999). Admissible observation operators. duality of observation and control using factorizations, Dynamics of Continuous, Discrete and Impulsive Systems 6(1): 87–119.
[21] [21] Gustafson, K. and Rao, D. (1997). Numerical Range. The Field of Values of Linear Operators and Matrices, Springer, New York.
[22] [22] Ionkin, N. (1977). Solutions of a boundary-value problem in heat conduction with a nonclassical boundary condition, Differentsial’nye Uravnieniya 13(2): 294–304.
[23] [23] Janas, J. (1989). On unbounded hyponormal operators I, Archive för Matematik 27(1–2): 273–281.
[24] [24] Kantorovitz, S. (2000). Topics in Operator Semigroups, Springer, New York.
[25] [25] Kato, T. (1995). Perturbation Theory for Linear Operators, Springer, Berlin.
[26] [26] Katsnel’son, V. (1967). Conditions for a system of root vectors of certain classes of operators to be a basis, Fuktsjonal’nyj analiz i evo prilozhenija 1(2): 39–51.
[27] [27] Kesel’man, G. (1964). On the unconditional convergence of eigenfunction expansions of some differential operators, Izvestya Vyshych Uchebnych Zavedenii: Matematika 39(2): 82–93, (in Russian).
[28] [28] Lang, P. and Locker, J. (1989). Spectral theory of two-point differential operators determined by −D2. I: Spectral properities, Journal of Mathematical Analysis and Applications 141(2): 538–558.
[29] [29] Lang, P. and Locker, J. (1990). Spectral theory of two-point differential operators determined by −D2. II: Analysis of cases, Journal of Mathematical Analysis and Applications 146(1): 148–191.
[30] [30] Marchenko, V. (1977). Sturm–Liouville Operators and Applications, Naukova Dumka, Kiev.
[31] [31] Mennicken, R. and Möller, M. (2003). Non-self-adjoint Boundary Eigenvalue Problems, Elsevier, Amsterdam.
[32] [32] Mikhajlov, V. (1962). On Riesz bases in L2(0, 1), Doklady Akademii Nauk SSSR 144(5): 981–984, (in Russian).
[33] [33] Orland, G. (1964). On a class of operators, Proceedings of the American Mathematical Society 15(1): 75–79.
[34] [34] Paunonen, L. (2014). Robustness of strong stability of semigroups, Journal of Differential Equations 257(12): 403–436.
[35] [35] Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York.
[36] [36] Prüss, J. (1984). On the spectrum of C0-semigroups, Transactions of the American Mathematical Society 284(2): 847–857.
[37] [37] Röh, H. (1982a). Dissipative operator with finite dimensional damping, Proceedings of the Royal Society of Edinburgh 91A(3–4): 243–263.
[38] [38] Röh, H. (1982b). Spectral Analysis of Non Self-Adjoint C0-Semigroup Generators, PhD thesis, Hariot–Watt University, Edinburgh.
[39] [39] Shapiro, J. (2017). Notes on the numerical range, Technical Report, May, 5, Michigan State University, East Lansing.
[40] [40] Shkalikov, A. (1982). Basis property of eigenfunctions of ordinary differential operators with integral boundary conditions, Vestnik Moskovskogo Universiteta: Matematika i Mekhanika 6: 12–21, (in Russian).
[41] [41] Shkalikov, A. (1986). Boundary problem for ordinary differential operators with parameter in the boundary conditions, Journal of Soviet Mathematics 33(6): 1311–1342.
[42] [42] Triggiani, R. (1975). On the stabilizability problem in Banach space, SIAM Journal on Control 13(3): 383–403.
[43] [43] Weidmann, J. (1980). Linear Operators in Hilbert Spaces, Springer, Heidelberg.