Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2021_31_1_a7, author = {Sumithra, S. and Vadivel, R.}, title = {An optimal innovation based adaptive estimation {Kalman} filter for accurate positioning in a vehicular ad-hoc network}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {45--57}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a7/} }
TY - JOUR AU - Sumithra, S. AU - Vadivel, R. TI - An optimal innovation based adaptive estimation Kalman filter for accurate positioning in a vehicular ad-hoc network JO - International Journal of Applied Mathematics and Computer Science PY - 2021 SP - 45 EP - 57 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a7/ LA - en ID - IJAMCS_2021_31_1_a7 ER -
%0 Journal Article %A Sumithra, S. %A Vadivel, R. %T An optimal innovation based adaptive estimation Kalman filter for accurate positioning in a vehicular ad-hoc network %J International Journal of Applied Mathematics and Computer Science %D 2021 %P 45-57 %V 31 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a7/ %G en %F IJAMCS_2021_31_1_a7
Sumithra, S.; Vadivel, R. An optimal innovation based adaptive estimation Kalman filter for accurate positioning in a vehicular ad-hoc network. International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 1, pp. 45-57. http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a7/
[1] [1] Al-Sultan, S., Al-Doori, M.M., Al-Bayatti, A.H. and Zedan, H. (2014). A comprehensive survey on vehicular ad hoc network, Journal of Network and Computer Applications 37: 380–392.
[2] [2] Alam, N. and Dempster, A.G. (2013). Cooperative positioning for vehicular networks: Facts and future, IEEE Transactions on Intelligent Transportation Systems 14(4): 1708–1717.
[3] [3] Amadeo, M., Campolo, C. and Molinaro, A. (2012). Enhancing IEEE 802.11 p/wave to provide infotainment applications in VANETs, Ad Hoc Networks 10(2): 253–269.
[4] [4] Bar-Shalom, Y., Li, X.R. and Kirubarajan, T. (2004). Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software, John Wiley, Hoboken.
[5] [5] Bidyuk, P., Podladchikov, V.D. and Podladchikova, I. (1993). Analytical study of the Kalman filter for stationary dynamic systems, AppliedMathematics and Computer Science 3(2): 313–328.
[6] [6] Byrski, W., Drapała, M. and Byrski, J. (2019). An adaptive identification method based on the modulating functions technique and exact state observers for modeling and simulation of a nonlinear MISO glass melting process, International Journal of Applied Mathematics and Computer Science 29(4): 739–757, DOI: 10.2478/amcs-2019-0055.
[7] [7] Chabir, K., Rhouma, T., Keller, J.Y. and Sauter, D. (2018). State filtering for networked control systems subject to switching disturbances, International Journal of Applied Mathematics and Computer Science 28(3): 473–482, DOI: 10.2478/amcs-2018-0036.
[8] [8] Chatterjee, A. and Matsuno, F. (2007). A neuro-fuzzy assisted extended Kalman filter-based approach for simultaneous localization and mapping (SLAM) problems, IEEE Transactions on Fuzzy Systems 15(5): 984–997.
[9] [9] Chen, X., Li, L. and Zhang, Y. (2010). A Markov model for headway/spacing distribution of road traffic, IEEE Transactions on Intelligent Transportation Systems 11(4): 773–785.
[10] [10] Ding, W., Wang, J., Rizos, C. and Kinlyside, D. (2007). Improving adaptive Kalman estimation in GPS/INS integration, The Journal of Navigation 60(3): 517.
[11] [11] ETSI (2010). TS 102 731 v1. 1.1—Intelligent Transport Systems (ITS); Security; Security Services and Architecture, European Telecommunications Standards Institute, Sophia-Antipolis.
[12] [12] Gao, W., Li, J., Zhang, Y., Wang, G. and Sun, X. (2017). Improved innovation-based adaptive estimation for measurement noise uncertainty in SINS/GNSS integration system, 2017 Forum on Cooperative Positioning and Service (CPGPS), Harbin, China, pp. 22–28.
[13] [13] Ghaleb, F.A., Zainal, A. and Rassam, M.A. (2016). Mobility information estimation algorithm using Kalman-filter for vehicular ad hoc networks, International Journal of Information and Computer Security 8(3): 221–240.
[14] [14] Golestan, K., Sattar, F., Karray, F., Kamel, M. and Seifzadeh, S. (2015). Localization in vehicular ad hoc networks using data fusion and V2V communication, Computer Communications 71: 61–72.
[15] [15] Havangi, R., Nekoui, M.A. and Teshnehlab, M. (2010). Adaptive neuro-fuzzy extended Kalman filtering for robot localization, Proceedings of the 14th International Power Electronics and Motion Control Conference (EPE-PEMC), Ohrid, Macedonia, pp. T5–130.
[16] [16] Hide, C., Moore, T. and Smith, M. (2004). Adaptive Kalman filtering algorithms for integrating GPS and low cost INS, PLANS 2004: Position Location and Navigation Symposium, Monterey, USA, pp. 227–233.
[17] [17] Hou, Y., Edara, P. and Sun, C. (2013). Modeling mandatory lane changing using Bayes classifier and decision trees, IEEE Transactions on Intelligent Transportation Systems 15(2): 647–655.
[18] [18] Hu, I. (2017). Extended Kalman filter approach for reducing traffic congestion in VANET, International Journal of Engineering Development and Research 5(2): 204–210.
[19] [19] Huang, C.-M. and Lin, S.-Y. (2014). Cooperative vehicle collision warning system using the vector-based approach with dedicated short range communication data transmission, IET Intelligent Transport Systems 8(2): 124–134.
[20] [20] Hubaux, J.-P., Capkun, S. and Luo, J. (2004). The security and privacy of smart vehicles, IEEE Security Privacy 2(3): 49–55.
[21] [21] Jiancheng, F. and Sheng, Y. (2011). Study on innovation adaptive EKF for in-flight alignment of airborne POS, IEEE Transactions on Instrumentation and Measurement 60(4): 1378–1388.
[22] [22] Kalman, R.E. (1960). A new approach to linear filtering and prediction problems, Transactions of the ASME—Journal of Basic Engineering 82(D): 35–45.
[23] [23] Kato, S., Tsugawa, S., Tokuda, K., Matsui, T. and Fujii, H. (2002). Vehicle control algorithms for cooperative driving with automated vehicles and intervehicle communications, IEEE Transactions on Intelligent Transportation Systems 3(3): 155–161.
[24] [24] Khattab, A., Fahmy, Y.A. and Abdel Wahab, A. (2015). High accuracy GPS-FREE vehicle localization framework via an ins-assisted single RSU, International Journal of Distributed Sensor Networks 11(5): 795036.
[25] [25] Korbicz, J., Podladchikov, V. and Bidyuk, P. (1994). Integration of multisensor measurements using modified Kalman filter, Applied Mathematics and Computer Science 4(1): 39–51.
[26] [26] Langbein, J. and Johnson, H. (1997). Correlated errors in geodetic time series: Implications for time-dependent deformation, Journal of Geophysical Research: Solid Earth 102(B1): 591–603.
[27] [27] Le, L., Festag, A., Baldessari, R. and Zhang, W. (2009). Vehicular wireless short-range communication for improving intersection safety, IEEE Communications Magazine 47(11): 104–110.
[28] [28] Lee, S. and Lim, A. (2013). An empirical study on ad hoc performance of DSRC and wi-fi vehicular communications, International Journal of Distributed Sensor Networks 9(11): 482695.
[29] [29] Li, J., Song, N., Yang, G. and Jiang, R. (2016). Fuzzy adaptive strong tracking scaled unscented Kalman filter for initial alignment of large misalignment angles, Review of Scientific Instruments 87(7): 075118.
[30] [30] Li, L., Wen, D., Zheng, N.-N. and Shen, L.-C. (2011). Cognitive cars: A new frontier for ADAS research, IEEE Transactions on Intelligent Transportation Systems 13(1): 395–407.
[31] [31] Li, W., Wang, Z., Wei, G., Ma, L., Hu, J. and Ding, D. (2015). A survey on multisensor fusion and consensus filtering for sensor networks, Discrete Dynamics in Nature and Society 2015, Article ID: 683701, DOI: 10.1155/2015/683701.
[32] [32] Liu, M. and Xiong, F. (2011). A fuzzy adaptive GPS/INS integrated navigation algorithm, Procedia Engineering 15: 660–664.
[33] [33] Loebis, D., Sutton, R., Chudley, J. and Naeem, W. (2004). Adaptive tuning of a Kalman filter via fuzzy logic for an intelligent AUV navigation system, Control Engineering Practice 12(12): 1531–1539.
[34] [34] Lobo, F., Grael, D., Oliveira, H., Villas, L., Almehmadi, A. and El-Khatib, K. (2019). Cooperative localization improvement using distance information in vehicular ad hoc networks, Sensors 19(23): 5231.
[35] [35] Lobo, J., Lucas, P., Dias, J. and De Almeida, A.T. (1995). Inertial navigation system for mobile land vehicles, Proceedings of the IEEE International Symposium on Industrial Electronics, Athens, Greece, Vol. 2, pp. 843–848.
[36] [36] Mehra, R. (1970). On the identification of variances and adaptive Kalman filtering, IEEE Transactions on Automatic Control 15(2): 175–184.
[37] [37] Milanés, V., Shladover, S.E., Spring, J., Nowakowski, C., Kawazoe, H. and Nakamura, M. (2013). Cooperative adaptive cruise control in real traffic situations, IEEE Transactions on Intelligent Transportation Systems 15(1): 296–305.
[38] [38] Mohamed, A. and Schwarz, K. (1999). Adaptive Kalman filtering for INS/GPS, Journal of Geodesy 73(4): 193–203.
[39] [39] Montillet, J.-P., Tregoning, P., McClusky, S. and Yu, K. (2012). Extracting white noise statistics in GPS coordinate time series, IEEE Geoscience and Remote Sensing Letters 10(3): 563–567.
[40] [40] Mrugalski, M. (2013). An unscented Kalman filter in designing dynamic GMDH neural networks for robust fault detection, International Journal of Applied Mathematics and Computer Science 23(1): 157–169, DOI: 10.2478/amcs-2013-0013.
[41] [41] Parker, R. and Valaee, S. (2007). Vehicular node localization using received-signal-strength indicator, IEEE Transactions on Vehicular Technology 56(6): 3371–3380.
[42] [42] Rauh, A., Butt, S.S. and Aschemann, H. (2013). Nonlinear state observers and extended kalman filters for battery systems, International Journal of Applied Mathematics and Computer Science 23(3): 539–556, DOI: 10.2478/amcs-2013-0041.
[43] [43] Rezaei, S. and Sengupta, R. (2007). Kalman filter-based integration of DGPS and vehicle sensors for localization, IEEE Transactions on Control Systems Technology 15(6): 1080–1088.
[44] [44] Sarkka, S. and Nummenmaa, A. (2009). Recursive noise adaptive Kalman filtering by variational Bayesian approximations, IEEE Transactions on Automatic Control 54(3): 596–600.
[45] [45] Sierociuk, D. and Dzieliński, A. (2006). Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation, International Journal of Applied Mathematics and Computer Science 16(1): 129–140.
[46] [46] Skog, I. and Handel, P. (2009). In-car positioning and navigation technologies—A survey, IEEE Transactions on Intelligent Transportation Systems 10(1): 4–21.
[47] [47] Thiemann, C., Treiber, M. and Kesting, A. (2008). Estimating acceleration and lane-changing dynamics from next generation simulation trajectory data, Transportation Research Record 2088(1): 90–101.
[48] [48] Wang, H., Fu, G., Li, J., Yan, Z. and Bian, X. (2013). An adaptive UKF based SLAM method for unmanned underwater vehicle, Mathematical Problems in Engineering 2013, Article ID: 605981.
[49] [49] Wang, Z., Woodward, W.A. and Gray, H.L. (2009). The application of the Kalman filter to nonstationary time series through time deformation, Journal of Time Series Analysis 30(5): 559–574.
[50] [50] Woo, R., Yang, E.-J. and Seo, D.-W. (2019). A fuzzy-innovation-based adaptive Kalman filter for enhanced vehicle positioning in dense urban environments, Sensors 19(5): 1142.
[51] [51] Xi, C. and Cheng-dong, X. (2017). Performance analysis of multi-constellation GNSS in urban canyons based on fuzzy comprehensive evaluation, 29th Chinese Control and Decision Conference (CCDC), Chongqing, China, pp. 3040–3045.
[52] [52] Xu, Q., Mak, T., Ko, J. and Sengupta, R. (2004). Vehicle-to-vehicle safety messaging in DSRC, Proceedings of the 1st ACM International Workshop on Vehicular AD HOC Networks, Philadelphia, USA, pp. 19–28.
[53] [53] Yim, J., Joo, J. and Park, C. (2011). A Kalman filter updating method for the indoor moving object database, Expert Systems with Applications 38(12): 15075–15083.
[54] [54] Yu, M.-J. (2012). INS/GPS integration system using adaptive filter for estimating measurement noise variance, IEEE Transactions on Aerospace and Electronic Systems 48(2): 1786–1792.
[55] [55] ZhiWen, X., XiaoPing, H. and JunXiang, L. (2013). Robust innovation-based adaptive Kalman filter for INS/GPS land navigation, 2013 Chinese Automation Congress, Changsha, China, pp. 374–379.