Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2021_31_1_a6, author = {Huang, Lei and Ren, Hao and Chai, Yi and Qu, Jianfeng}, title = {A fault detection method based on stacking the {SAE-SRBM} for nonstationary and stationary hybrid processes}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {29--43}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a6/} }
TY - JOUR AU - Huang, Lei AU - Ren, Hao AU - Chai, Yi AU - Qu, Jianfeng TI - A fault detection method based on stacking the SAE-SRBM for nonstationary and stationary hybrid processes JO - International Journal of Applied Mathematics and Computer Science PY - 2021 SP - 29 EP - 43 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a6/ LA - en ID - IJAMCS_2021_31_1_a6 ER -
%0 Journal Article %A Huang, Lei %A Ren, Hao %A Chai, Yi %A Qu, Jianfeng %T A fault detection method based on stacking the SAE-SRBM for nonstationary and stationary hybrid processes %J International Journal of Applied Mathematics and Computer Science %D 2021 %P 29-43 %V 31 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a6/ %G en %F IJAMCS_2021_31_1_a6
Huang, Lei; Ren, Hao; Chai, Yi; Qu, Jianfeng. A fault detection method based on stacking the SAE-SRBM for nonstationary and stationary hybrid processes. International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 1, pp. 29-43. http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a6/
[1] [1] Adil, M., Abid, M., Khan, A.Q., Mustafa, G. and Ahmed, N. (2016). Exponential discriminant analysis for fault diagnosis, Neurocomputing 171: 1344–1353, DOI: 10.1016/j.neucom.2015.07.099.
[2] [2] Byrski, W., Drapała, M. and Byrski, J. (2019). An adaptive identification method based on the modulating functions technique and exact state observers for modeling and simulation of a nonlinear MISO glass melting process, International Journal of Applied Mathematics and Computer Science 29(4): 739–757, DOI: 10.2478/amcs-2019-0055.
[3] [3] Chen, Q., Kruger, U. and Leung, A.Y.T. (2009). Cointegration testing method for monitoring nonstationary processes, Industrial and Engineering Chemistry Research 48(7): 3533–3543, DOI: 10.1021/ie801611s.
[4] [4] Chen, Z.W., Liu, C., Ding, S., Peng, T., Yang, C.H., Gui, W.H. and Shardt, Y. (2020a). A just-in-time-learning aided canonical correlation analysis method for multimode process monitoring and fault detection, IEEE Transactions on Industrial Electronics 68(6): 5259–5270, DOI: 10.1109/TIE.2020.2989708.
[5] [5] Chen, Z.W., Yang, C.H., Peng, T., Dan, H., Li, C. and Gui, W.H. (2020b). A cumulative canonical correlation analysis-based sensor precision degradation detection method, IEEE Transactions on Industrial Electronics 66(8): 6321–6330, DOI: 10.1109/TIE.2018.2873100.
[6] [6] Dickey, D.P. (1981). Likelihood ratio statistics for autoregressive time serries with a unit root, Econometrica 49(4): 1057–1072, DOI: 10.2307/1912517.
[7] [7] Dong, J., Zhang, K., Huang, Y., Li, G. and Peng, K.X. (2015). Adaptive total PLS based quality-relevant process monitoring with application to the Tennessee Eastman process, Neurocomputing 154: 77–85, DOI: 10.1016/j.neucom.2014.12.017.
[8] [8] Engle, R.F. and Granger, C.W.J. (1987). Co-integration and error correction: Representation, estimation, and testing, Econometrica 55(2): 251–276, DOI: 10.2307/1913236.
[9] [9] Firouzi, A., Yang, W. and Li, C.Q. (2018). Efficient solution for calculation of upcrossing rate of nonstationary Gaussian process, Journal of Engineering Mechanics 144(4): 04018015, DOI: 10.1061/(ASCE)EM.1943-7889.0001420.
[10] [10] Geng, Z.Q., Wang, Z., Hu, H.X., Han, Y.M., Lin, X.Y. and Zhong, Y.H. (2018). A fault detection method based on horizontal visibility graph-integrated complex networks: application to complex chemical processes, The Canadian Journal of Chemical Engineering 97(5): 1129–1138, DOI: 10.1002/cjce.23319.
[11] [11] He, Z.M., Zhou, H.Y., Wang, J.Q., Chen, Z.W., Wang, D.Y. and Yan, X. (2015). An improved detection statistic for monitoring the nonstationary and nonlinear processes, Chemometrics and Intelligent Laboratory Systems 145: 114–124, DOI: 10.1016/j.chemolab.2015.04.016.
[12] [12] Jiang, P., Hu, Z.X., Liu, J., Yu, S.N. and Wu, F. (2016). Fault diagnosis based on chemical sensor data with an active deep neural network, Sensors 16(10): 01695, DOI: 10.3390/s16101695.
[13] [13] Lee, H., Ekanadham, C. and Ng, A.Y. (2008). Sparse deep belief net model for visual area v2, Proceedings of the 21st International Conference on Neural Networks, NIPS’07, Vancouver, Canada, pp. 873–880.
[14] [14] Leng, J.W. and Jiang, P.Y. (2016). A deep learning approach for relationship extraction from interaction context in social manufacturing paradigm, Knowledge Based Systems 100: 188–199, DOI: 10.1016/j.knosys.2016.03.008.
[15] [15] Li, G., Qin, S.J. and Yuan, T. (2014). Nonstationarity and cointegration tests for fault detection of dynamic processes, IFAC Proceedings Volumes 47(3): 10616–10621, DOI: 10.3182/20140824-6-ZA-1003.00754.
[16] [16] Lin, Y.L., Kruger, U. and Chen, Q. (2017). Monitoring nonstationary dynamic systems using cointegration and common-trends analysis, Industrial and Engineering Chemistry Research 56(31): 8895–8905, DOI: 10.1021/acs.iecr.7b00011.
[17] [17] Lin, Y.L., Kruger, U., Gu, F.S., Ball, A. and Chen, Q. (2019a). Monitoring nonstationary and dynamic trends for practical process fault diagnosis, Control Engineering Practice 84: 139–158, DOI: 10.1016/j.conengprac.2018.11.020.
[18] [18] Lin, Y.L., Kruger, U., Gu, F.S., Balland, A. and Chen, Q. (2019b). Monitoring nonstationary processes using stationary subspace analysis and fractional integration order estimation, Industrial and Engineering Chemistry Research 58(16): 6486–6504, DOI: 10.1021/acs.iecr.8b05099.
[19] [19] Liu, Q. and Qin, S.J. (2016). Perspectives on big data modeling of process industries, Acta Automatica Sinica 42(2): 161–171.
[20] [20] Lu, W., Liang, B., Cheng, Y., Meng, D. and Zhang, T. (2017). Deep model based domain adaptation for fault diagnosis, IEEE Transactions on Industrial Electronics 64(99): 2296–2305, DOI: 10.1109/TIE.2016.2627020.
[21] [21] Ma, J., Li, G. and Zhou, D. (2018). Fault prognosis technology for non-Gaussian and nonlinear processes based on KICA reconstruction, Canadian Journal of Chemical Engineering 96(2): 515–520, DOI: 10.1002/cjce.23051.
[22] [22] Montmain, J., Labreuche, C., Imoussaten, A. and Trousset, F. (2015). Multi-criteria improvement of complex systems, Information Sciences 291: 61–84, DOI: 10.1016/j.ins.2014.08.027.
[23] [23] Orlov, A.A., Ushakov, A.A., Sovach, V.P. and Mymrina, D.F. (2017). Modeling of nonstationary processes during separation of multicomponent isotope mixtures, Separation Science and Technology 53(5): 796–806, DOI: 10.1080/01496395.2017.1399910.
[24] [24] Pröll, S., Lunze, J. and Jarmolowitz, F. (2018). From structural analysis to observer-based residual generation for fault detection, International Journal of Applied Mathematics and Computer Science 28(2): 233–245, DOI: 10.2478/amcs-2018-0017.
[25] [25] Ren, H., Chai, Y., Qu, J.F., Ye, X. and Tang, Q. (2018). A novel adaptive fault detection methodology for complex system using deep belief networks and multiple models: A case study on cryogenic propellant loading system, Neurocomputing 275: 2111–2125, DOI: 10.1016/j.neucom.2017.10.063.
[26] [26] Ren, H., Qu, J.F., Chai, Y., Tang, Q. and Ye, X. (2017). Deep learning for fault diagnosis: The state of the art and challenge, Control and Decision 32(8): 1343–1358, DOI: 10.13195/j.kzyjc.2016.1625.
[27] [27] Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986). Learning representations by back-propagating errors, Nature 323(9): 533–536.
[28] [28] Sadough Vanini, Z.N., Khorasani, K. and Meskin, N. (2014). Fault detection and isolation of a dual spool gas turbine engine using dynamic neural networks and multiple model approach, Information Sciences 259(3): 234–251, DOI: 10.1016/j.ins.2013.05.032.
[29] [29] Severson, K., Chaiwatanodom, P. and Braatz, R.D. (2016). Perspectives on process monitoring of industrial systems, Annual Reviews in Control 42: 190–200, DOI: 10.1016/j.ifacol.2015.09.646.
[30] [30] Shang, J., Chen, M., Ji, H., Zhou, D., Zhang, H. and Li, M. (2017). Dominant trend based logistic regression for fault diagnosis in nonstationary processes, Control Engineering Practice 66: 156–168, DOI: 10.1016/j.conengprac.2017.06.011.
[31] [31] Souza, B.D., Kuhn, E.V. and Seara, R. (2019). A time-varying autoregressive model for characterizing nonstationary processes, IEEE Signal Processing Letters 26(1): 134–138, DOI: 10.1109/LSP.2018.2880086.
[32] [32] Sun, H., Zhang, S.M., Zhao, C.H. and Gao, F.R. (2017). A sparse reconstruction strategy for online fault diagnosis in nonstationary processes with no a priori fault information, Industrial and Engineering Chemistry Research 56(24): 6993–7008, DOI: 10.1021/acs.iecr.7b00156.
[33] [33] Sun, W.J., Shao, S.Y., Zhao, R., Yan, R.Q., Zhang, X.W. and Chen, X.F. (2016). A sparse auto-encoder-based deep neural network approach for induction motor faults classification, Measurement 89: 171–178, DOI: 10.1016/j.measurement.2016.04.007.
[34] [34] Utkin, L.V., Zaborovskii, V.S. and Popov, S.G. (2016). Detection of anomalous behavior in a robot system based on deep learning elements, Automatic Control and Computer Sciences 50(8): 726–733, DOI: 10.3103/S0146411616080319.
[35] [35] Wang, L.K., Zhao, X.Y., Pei, J.N. and Tang, G.Y. (2016). Transformer fault diagnosis using continuous sparse autoencoder, SpringerPlus 5, Article no.: 448, DOI: 10.1186/s40064-016-2107-7.
[36] [36] Worden, K., Baldacchino, T., Rowson, J. and Cross, E.J. (2016). Some recent developments in SHM based on nonstationary time series analysis, Proceedings of the IEEE 104(8): 1589–1603, DOI: 10.1109/JPROC.2016.2573596.
[37] [37] Xi, X.P., Chen, M.Y., Zhang, H.W. and Zhou, D.H. (2018). An improved non-Markovian degradation model with long-term dependency and item-to-item uncertainty, Mechanical Systems and Signal Processing 105: 467–480, DOI: 10.1016/j.ymssp.2017.12.017.
[38] [38] Xiong, Y. and Zuo, R. (2016). Recognition of geochemical anomalies using a deep autoencoder network, Computers and Geosciences 86: 75–82, DOI: 10.1016/j.cageo.2015.10.006.
[39] [39] Yan, W.W., Guo, P.J., Gong, L.A. and Li, Z.K. (2016). Nonlinear and robust statistical process monitoring based on variant autoencoders, Chemometrics and Intelligent Laboratory Systems 158: 31–40, DOI: 10.1016/j.chemolab.2016.08.007.
[40] [40] Yin, S., Ding, S.X., Haghani, A., Hao, H. and Zhang, P. (2012). A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process, Journal of Process Control 22(9): 1567–1581, DOI: 10.1016/j.jprocont.2012.06.009.
[41] [41] Zhang, Q., Yang, L.T. and Chen, Z.W. (2016). Deep computation model for unsupervised feature learning on big data, IEEE Transactions on Services Computing 9(1): 161–171, DOI: 10.1109/TSC.2015.2497705.
[42] [42] Zhang, Z.H., Jiang, T., Zhan, C.J. and Yang, Y.P. (2019). Gaussian feature learning based on variational autoencoder for improving nonlinear process monitoring, Journal of Process Control 75: 136–155, DOI: 10.1016/j.jprocont.2019.01.008.
[43] [43] Zhang, Z., Jiang, T., Li, S. and Yang, Y. (2018). Automated feature learning for nonlinear process monitoring-An approach using stacked denoising autoencoder and k-nearest neighbor rule, Journal of Process Control 64: 49–61, DOI: 10.1016/j.jprocont.2018.02.004.
[44] [44] Zhang, Z. and Zhao, J. (2017). A deep belief network based fault diagnosis model for complex chemical processes, Computers and Chemical Engineering 107: 395–407, DOI: 10.1016/j.compchemeng.2017.02.041.
[45] [45] Zhao, C.H. and Huang, B. (2018a). A full-condition monitoring method for nonstationary dynamic chemical processes with cointegration and slow feature analysis, American Institute of Chemical Engineers 64(5): 1662–1681, DOI: 10.1002/aic.16048.
[46] [46] Zhao, C.H. and Huang, B. (2018b). Incipient fault detection for complex industrial processes with stationary and nonstationary hybrid characteristics, Industrial and Engineering Chemistry Research 57: 5045–5057, DOI: 10.1021/acs.iecr.8b00233.
[47] [47] Zhao, C.H. and Sun, H. (2019). Dynamic distributed monitoring strategy for large-scale nonstationary processes subject to frequently varying conditions under closed-loop control, IEEE Transactions on Industrial Electronics 66(6): 4749–4758, DOI: 10.1109/TIE.2018.2864703.
[48] [48] Zhirabok, A. and Shumsky, A. (2018). Fault diagnosis in nonlinear hybrid systems, International Journal of Applied Mathematics and Computer Science 28(4): 635–648, DOI: 10.2478/amcs-2018-0049.
[49] [49] Zou, X.Y. and Zhao, C.H. (2019). Meticulous assessment of operating performance for processes with a hybrid of stationary and nonstationary variables, Industrial and Engineering Chemistry Research 58: 1341–1351, DOI: 10.1021/acs.iecr.8b05005.