Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2021_31_1_a14, author = {Dubey, Sapana P. and Kedar, Ganesh D. and Ghate, Suresh H.}, title = {A communication network routing problem: {Modeling} and optimization using non-cooperative game theory}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {155--164}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a14/} }
TY - JOUR AU - Dubey, Sapana P. AU - Kedar, Ganesh D. AU - Ghate, Suresh H. TI - A communication network routing problem: Modeling and optimization using non-cooperative game theory JO - International Journal of Applied Mathematics and Computer Science PY - 2021 SP - 155 EP - 164 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a14/ LA - en ID - IJAMCS_2021_31_1_a14 ER -
%0 Journal Article %A Dubey, Sapana P. %A Kedar, Ganesh D. %A Ghate, Suresh H. %T A communication network routing problem: Modeling and optimization using non-cooperative game theory %J International Journal of Applied Mathematics and Computer Science %D 2021 %P 155-164 %V 31 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a14/ %G en %F IJAMCS_2021_31_1_a14
Dubey, Sapana P.; Kedar, Ganesh D.; Ghate, Suresh H. A communication network routing problem: Modeling and optimization using non-cooperative game theory. International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 1, pp. 155-164. http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a14/
[1] [1] Altman, E., Basar, T., Jimenez, T. and Shimkin, N. (2002). Competitive routing in networks with polynomial cost, IEEE Transactions on Automatic Control 47(1): 92–96.
[2] [2] Altman, E. and Wynter, L. (2004). Equilibrium, games, and pricing in transportation and telecommunication networks, Networks and Spatial Economics 4: 7–21, DOI: 10.1023/B:NETS.0000015653.52983.61.
[3] [3] Banner, R. and Orda, A. (2007). Bottleneck routing games in communication networks, IEEE Transactions on Automatic Control 25(6): 1173–1179, DOI: 10.1109/JSAC.2007.070811.
[4] [4] Ignatenko, O.P. (2016). Game theoretic modeling of AIMD network equilibrium, Problems of Programming 25(1): 116–128.
[5] [5] Massey, W.A. (2002). The analysis of queues with time varying rate for telecommunication models, Telecommunication Systems 21: 2–4, DOI: 10.1023/A:1020990313587.
[6] [6] Nguyen, P.H., Kling, W.L. and Ribeiro, P.F. (2013). A game theory strategy to integrate distributed agent-based functions in smart grids, IEEE Transactions Smart Grid 4(1): 568–576, DOI: 10.1109/TSG.2012.2236657.
[7] [7] Orda, A., Rom, R. and Shimkin, N. (1993). Competitive routing in multi-user communication networks, IEEE/ACM Transactions on Networking 1(5): 510–521, DOI: 10.1109/90.251910.
[8] [8] Qin, X., Wang, X., Wang, L., Lin, Y. and Wang, X. (2019). An efficient probabilistic routing scheme based on game theory in opportunistic networks, Computer Networks 149: 144–153, DOI: 10.1016/j.comnet.2018.11.022.
[9] [9] Sahin, I. and Simaan, M.A. (2006). A flow and routing control policy for communication networks with multiple competitive users, Journal of the Franklin Institute 343(2): 168–180.
[10] [10] Schelling, T.C. (1960). The Strategy of Conflict, 1st Edn, Harvard University Press, Cambridge.
[11] [11] Wellons, J., Dai, L., Xue, Y. and Cui, Y. (2008). Predictive or oblivious: A comparative study of routing strategies for wireless mesh networks under uncertain demand, 5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, San Francisco, USA, pp. 215–223, DOI: 10.1109/SAHCN.2008.35.
[12] [12] Zhang, Z., Zhang, M., Greenberg, A., Charlie Hu, Y., Mahajan, R. and Christian, B. (2010). Optimizing cost and performance in online service provider networks, 7th USENIX Symposium on Networked Systems Design and Implementation, San Jose, USA, pp. 33–47.