Mining clinical pathways for daily insulin therapy of diabetic children
International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 1, pp. 107-121.

Voir la notice de l'article provenant de la source Library of Science

We propose a decision support framework (DSF) assisting insulin therapy of diabetic children. Our DSF relies on a medical treatment graph (MTG), which models and graphically represents clinical pathways. Using the MTG, it is possible to plan and adapt medical decisions dependent upon the current health state of a patient and the progress of the treatment. Our MTG fits well with the requirements of clinical practice. The presented work is a cooperative effort of researchers in computer science and medicine. The MTG model has been thoroughly tested and validated using real-world clinical data. The usefulness of the approach has been confirmed by physicians.
Keywords: decision support systems, modeling clinical pathways, diabetes mellitus
Mots-clés : systemy wspomagania decyzji, modelowanie ścieżek klinicznych, cukrzyca
@article{IJAMCS_2021_31_1_a11,
     author = {Deja, Rafal and Froelich, Wojciech and Deja, Grazyna},
     title = {Mining clinical pathways for daily insulin therapy of diabetic children},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {107--121},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a11/}
}
TY  - JOUR
AU  - Deja, Rafal
AU  - Froelich, Wojciech
AU  - Deja, Grazyna
TI  - Mining clinical pathways for daily insulin therapy of diabetic children
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2021
SP  - 107
EP  - 121
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a11/
LA  - en
ID  - IJAMCS_2021_31_1_a11
ER  - 
%0 Journal Article
%A Deja, Rafal
%A Froelich, Wojciech
%A Deja, Grazyna
%T Mining clinical pathways for daily insulin therapy of diabetic children
%J International Journal of Applied Mathematics and Computer Science
%D 2021
%P 107-121
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a11/
%G en
%F IJAMCS_2021_31_1_a11
Deja, Rafal; Froelich, Wojciech; Deja, Grazyna. Mining clinical pathways for daily insulin therapy of diabetic children. International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 1, pp. 107-121. http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a11/

[1] [1] ADA (2020). Children and adolescents: Standards of medical care in diabetes—2020, Diabetes Care 43(Suppl 1): S163–S182.

[2] [2] Aspland, E., Gartner, D. and Harper, P. (2019). Clinical pathway modelling: A literature review, Health Systems 0(0): 1–23.

[3] [3] Augusto, V., Xie, X., Prodel, M., Jouaneton, B. and Lamarsalle, L. (2016). Evaluation of discovered clinical pathways using process mining and joint agent-based discrete-event simulation, Proceedings of the 2016 Winter Simulation Conference, Arlington, USA, pp. 2135–2146.

[4] [4] Barber, D. (2012). Bayesian Reasoning and Machine Learning, Cambridge University Press, Cambridge.

[5] [5] Bennett, C.C. and Hauser, K.K. (2013). Artificial intelligence framework for simulating clinical decision-making: A Markov decision process approach, CoRR abs/1301.2158.

[6] [6] Bourgani, E., Stylios, C., Georgopoulos, V. and Manis, G. (2013). A study on fuzzy cognitive map structures for medical decision support systems, in M. Nikravesh et al. (Eds), Forging New Frontiers: Fuzzy Pioneers II, Springer, Berlin/Heidelberg, pp. 151–174.

[7] [7] Calinski, T. and Harabasz, J. (1974). A dendrite method for cluster analysis, Communications in Statistics—Theory and Methods 3(1): 1–27.

[8] [8] Davidson, M. (2015). Insulin therapy: A personal approach, Clinical Diabetes: A publication of the American Diabetes Association 33(3): 123–135.

[9] [9] De Gaetano, A., Hardy, T., Beck, B., Raddad, E., Palumbo, P., Bue-Valleskey, J. and Pørksen, N. (2008). Mathematical models of diabetes progression, American Journal of Physiology:. Endocrinology and Metabolism 295(6): E1462–79.

[10] [10] Deja, R., Froelich, W. and Deja, G. (2015). Differential sequential patterns supporting insulin therapy of new-onset type 1 diabetes, Biomedical Engineering Online 14(1): 13.

[11] [11] Deja, R., Froelich, W., Deja, G. and Wakulicz-Deja, A. (2017). Hybrid approach to the generation of medical guidelines for insulin therapy for children, Information Sciences 384(C): 157–173.

[12] [12] Dunn, J.C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, Journal of Cybernetics 3(3): 32–57.

[13] [13] Elghazel, H., Deslandres, V., Kallel, K. and Dussauchoy, A. (2007). Clinical pathway analysis using graph-based approach and Markov models, ICDIM 2007 Proceedings, Lyon, France, pp. 279–284.

[14] [14] Froelich, W., Deja, R. and Deja, G. (2013). Mining therapeutic patterns from clinical data for juvenile diabetes, Fundamenta Informaticae 127(1): 513–528.

[15] [15] Funkner, A.A., Yakovlev, A.N. and Kovalchuk, S.V. (2017). Towards evolutionary discovery of typical clinical pathways in electronic health records, Procedia Computer Science 119: 234–244.

[16] [16] García, S., Luengo, J. and Herrera, F. (2015). Data Preprocessing in Data Mining, Intelligent Systems Reference Library, Vol. 72, Springer, Cham.

[17] [17] Haq, A., Wilk, S. and Abelló, A. (2019). Fusion of clinical data: A case study to predict the type of treatment of bone fractures, International Journal of Applied Mathematics and Computer Science 29(1): 51–67, DOI: 10.2478/amcs-2019-0004.

[18] [18] Hripcsak, G., Albers, D. and Perotte, A. (2015). Parameterizing time in electronic health record studies, Journal of the American Medical Informatics Association 22(4): 794–804.

[19] [19] Huang, Z., Lu, X. and Duan, H. (2012). On mining clinical pathway patterns from medical behaviors, Artificial Intelligence in Medicine 56(1): 35–50.

[20] [20] Marini, S., Trifoglio, E., Barbarini, N., Sambo, F., Di Camillo, B., Malovini, A., Manfrini,M., Cobelli, C. and Bellazzi, R. (2015). A dynamic Bayesian network model for long-term simulation of clinical complications in type 1 diabetes, Journal of Biomedical Informatics 57: 369–376.

[21] [21] Mattila, R., Siika, A., Roy, J. and Wahlberg, B. (2016). A Markov decision process model to guide treatment of abdominal aortic aneurysms, 2016 IEEE Conference on Control Applications (CCA), Buenos Aires, Argentina, pp. 436–441.

[22] [22] Ozcan, Y.A., Tánfani, E. and Testi, A. (2011). A simulation-based modeling framework to deal with clinical pathways, Proceedings of the 2011 Winter Simulation Conference (WSC), Phoenix, USA, pp. 1190–1201.

[23] [23] Palumbo, P., Ditlevsen, S., Bertuzzi, A. and Gaetano, A.D. (2013). Mathematical modeling of the glucose–insulin system: A review, Mathematical Biosciences 244(2): 69–81.

[24] [24] Papiez, A., Badie, C. and Polanska, J. (2019). Machine learning techniques combined with dose profiles indicate radiation response biomarkers, International Journal of Applied Mathematics and Computer Science 29(1): 169–178, DOI: 10.2478/amcs-2019-0013.

[25] [25] Schaefer, A., Bailey, M., Shechter, S. and Roberts, M. (2005). Modeling medical treatment using Markov decision processes, in M.L. Brandeau et al. (Eds), Operations Research and Health Care, Springer, Boston, pp. 593–612.

[26] [26] Schwarz, K., Römer, M. and Mellouli, T. (2019). A data-driven hierarchical MILP approach for scheduling clinical pathways: A real-world case study from a German university hospital, Business Research 12: 597–636.

[27] [27] Szwed, P. (2013). Application of fuzzy ontological reasoning in an implementation of medical guidelines, 6th International Conference on Human System Interactions, HSI 2013, Gdańsk, Poland, pp. 1–10.

[28] [28] Weijters, A., Aalst, W. and Medeiros, A. (2006). Process Mining with the Heuristics Miner-Algorithm, Eindhoven University of Technology, Eindhoven.

[29] [29] Xie, X.L. and Beni, G. (1991). A validity measure for fuzzy clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence 13(8): 841–847.

[30] [30] Yadav, P., Steinbach, M., Kumar, V. and Simon, G. (2017). Mining electronic health records: A survey, arXiv: 1702.03222.

[31] [31] Yang, X., Han, R., Guo, Y., Bradley, J., Cox, B., Dickinson, R. and Kitney, R. (2012). Modelling and performance analysis of clinical pathways using the stochastic process algebra PEPA, BMC Bioinformatics 13 (Suppl 14): S4.

[32] [32] Zhang, Y. and Padman, R. (2016). Data-driven clinical and cost pathways for chronic care delivery, The American Journal of Managed Care 22(12): 816–820.

[33] [33] Zhang, Y., Padman, R. and Patel, N. (2015). Paving the cowpath: Learning and visualizing clinical pathways from electronic health record data, Journal of Biomedical Informatics 58: 186–197.