Breast cancer nuclei segmentation and classification based on a deep learning approach
International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 1, pp. 85-106.

Voir la notice de l'article provenant de la source Library of Science

One of the most popular methods in the diagnosis of breast cancer is fine-needle biopsy without aspiration. Cell nuclei are the most important elements of cancer diagnostics based on cytological images. Therefore, the first step of successful classification of cytological images is effective automatic segmentation of cell nuclei. The aims of our study include (a) development of segmentation methods of cell nuclei based on deep learning techniques, (b) extraction of some morphometric, colorimetric and textural features of individual segmented nuclei, (c) based on the extracted features, construction of effective classifiers for detecting malignant or benign cases. The segmentation methods used in this paper are based on (a) fully convolutional neural networks and (b) the marker-controlled watershed algorithm. For the classification task, seven various classification methods are used. Cell nuclei segmentation achieves 90
Keywords: breast cancer, nuclei segmentation, image processing
Mots-clés : nowotwór piersi, segmentacja jądra, przetwarzanie obrazu
@article{IJAMCS_2021_31_1_a10,
     author = {Kowal, Marek and Skobel, Marcin and Gramacki, Artur and Korbicz, J\'ozef},
     title = {Breast cancer nuclei segmentation and classification based on a deep learning approach},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {85--106},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a10/}
}
TY  - JOUR
AU  - Kowal, Marek
AU  - Skobel, Marcin
AU  - Gramacki, Artur
AU  - Korbicz, Józef
TI  - Breast cancer nuclei segmentation and classification based on a deep learning approach
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2021
SP  - 85
EP  - 106
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a10/
LA  - en
ID  - IJAMCS_2021_31_1_a10
ER  - 
%0 Journal Article
%A Kowal, Marek
%A Skobel, Marcin
%A Gramacki, Artur
%A Korbicz, Józef
%T Breast cancer nuclei segmentation and classification based on a deep learning approach
%J International Journal of Applied Mathematics and Computer Science
%D 2021
%P 85-106
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a10/
%G en
%F IJAMCS_2021_31_1_a10
Kowal, Marek; Skobel, Marcin; Gramacki, Artur; Korbicz, Józef. Breast cancer nuclei segmentation and classification based on a deep learning approach. International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 1, pp. 85-106. http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a10/

[1] [1] Alsubaie, N., Trahearn, N., Raza, S., Snead, D. and Rajpoot, N. (2017). Stain deconvolution using statistical analysis of multi-resolution stain colour representation, PLOS ONE 12(1): e0169875.

[2] [2] Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018). Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: A Cancer Journal for Clinicians 68(6): 394–424.

[3] [3] Cui, Y., Zhang, G., Liu, Z., Xiong, Z. and Hu, J. (2018). A deep learning algorithm for one-step contour aware nuclei segmentation of histopathological images, arXiv: 1803.02786.

[4] [4] Dudzińska, D. and Piórkowski, A. (2020). Tissue differentiation based on classification of morphometric features of nuclei, in H. Florez and S. Misra (Eds), Applied Informatics, Springer, Cham, pp. 420–432.

[5] [5] Fondón, I., Sarmiento, A., García, A.I., Silvestre, M., Eloy, C., Polónia, A. and Aguiar, P. (2018). Automatic classification of tissue malignancy for breast carcinoma diagnosis, Computers in Biology and Medicine 96: 41–51.

[6] [6] Guan, H., Zhang, Y., Cheng, H.-D. and Tang, X. (2020). Bounded-abstaining classification for breast tumors in imbalanced ultrasound images, International Journal of Applied Mathematics and Computer Science 30(2): 325–336, DOI: 10.34768/amcs-2020-0025.

[7] [7] Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical Learning. Data Mining, Inference, and Prediction, Second Edition, Springer Series in Statistics, Springer, New York.

[8] [8] Hayakawa, T., Prasath, S., Kawanaka, H., Aronow, B. and Tsuruoka, S. (2019). Computational nuclei segmentation methods in digital pathology: A survey, Archives of Computational Methods in Engineering 28: 1–13.

[9] [9] Höfener, H., Homeyer, A., Weiss, N., Molin, J., Lundström, C.F. and Hahn, H.K. (2018). Deep learning nuclei detection: A simple approach can deliver state-of-the-art results, Computerized Medical Imaging and Graphics 70: 43–52.

[10] [10] Husham, A., Hazim Alkawaz, M., Saba, T., Rehman, A. and Saleh Alghamdi, J. (2016). Automated nuclei segmentation of malignant using level sets, Microscopy Research and Technique 79(10): 993–997.

[11] [11] Irshad, H., Veillard, A., Roux, L. and Racoceanu, D. (2014). Methods for nuclei detection, segmentation, and classification in digital histopathology: A review—Current status and future potential, IEEE Reviews in Biomedical Engineering 7: 97–114.

[12] [12] James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R, Springer Series in Statistics, Springer, New York.

[13] [13] Jassem, J. and Krzakowski, M. (2018). Breast cancer, Oncology in Clinical Practice 14(4): 171–215.

[14] [14] Kantavat, P., Kijsirikul, B., Songsiri, P., Fukui, K.-I. and Numao, M. (2018). Efficient decision trees for multi-class support vector machines using entropy and generalization error estimation, International Journal of Applied Mathematics and Computer Science 28(4): 705–717, DOI: 10.2478/amcs-2018-0054.

[15] [15] Kowal, M. and Filipczuk, P. (2014). Nuclei segmentation for computer-aided diagnosis of breast cancer, International Journal of Applied Mathematics and Computer Science 24(1): 19–31, DOI: 10.2478/amcs-2014-0002.

[16] [16] Kowal, M., Skobel, M. and Nowicki, N. (2018). The feature selection problem in computer-assisted cytology, International Journal of Applied Mathematics and Computer Science 28(4): 759–770, DOI: 10.2478/amcs-2018-0058.

[17] [17] Koyuncu, C.F., Akhan, E., Ersahin, T., Cetin-Atalay, R. and Gunduz-Demir, C. (2016). Iterative h-minima-based marker-controlled watershed for cell nucleus segmentation, Cytometry Part A 89(4): 338–349.

[18] [18] Landini, G., Rueden, C., Schindelin, J., Hiner, M. and Pavie, B. (2004). Image colour deconvolution, https://imagej.net/Colour_Deconvolution.

[19] [19] Litherland, J.C. (2002). Should fine needle aspiration cytology in breast assessment be abandoned?, Clinical Radiology 57(2): 81–84.

[20] [20] Macenko, M., Niethammer, M., Marron, J.S., Borland, D., Woosley, J.T., Guan, X., Schmitt, C. and Thomas, N.E. (2009). A method for normalizing histology slides for quantitative analysis, IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI), Boston, USA, pp. 1107–1110.

[21] [21] Mittal, H. and Saraswat, M. (2019). An automatic nuclei segmentation method using intelligent gravitational search algorithm based superpixel clustering, Swarm and Evolutionary Computation 45: 15–32.

[22] [22] Naylor, P., Laé, M., Reyal, F. and Walter, T. (2017). Nuclei segmentation in histopathology images using deep neural networks, IEEE 14th International Symposium on Biomedical Imaging, Melbourne, Australia, pp. 933–936.

[23] [23] Paramanandam, M., O‘Byrne, M., Ghosh, B., Mammen, J.J., Manipadam, M.T., Thamburaj, R. and Pakrashi, V. (2016). Automated segmentation of nuclei in breast cancer histopathology images, PLOS ONE 11(9): 1–15.

[24] [24] Piorkowski, A. and Gertych, A. (2019). Color normalization approach to adjust nuclei segmentation in images of hematoxylin and eosin stained tissue, in E. Piętka et al. (Eds), Information Technology in Biomedicine, Springer, Cham, pp. 393–406.

[25] [25] R Core Team (2019). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, https://www.R-project.org.

[26] [26] Rabinovich, A., Agarwal, S., Laris, C., Price, J. and Belongie, S. (2004). Unsupervised color decomposition of histologically stained tissue samples, in S. Thrun et al. (Eds), Advances in Neural Information Processing Systems 16, MIT Press, Cambridge, pp. 667–674.

[27] [27] Ronneberger, O., P.Fischer and Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation, in N. Navab et al. (Eds), Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer, Cham, pp. 234–241.

[28] [28] Ruifrok, A.C. and Johnston, D.A. (2001). Quantification of histochemical staining by color deconvolution, Analytical Quantitative Cytology Histology 23(4): 291–299.

[29] [29] Sadanandan, S.K., Ranefall, P., Le Guyader, S. and Wahlby, C. (2017). Automated training of deep convolutional neural networks for cell segmentation, Scientific Reports 7(7860): 1–7.

[30] [30] Santanu, R., Alok, J., Shyam, L. and Jyoti, K. (2018). A study about color normalization methods for histopathology images, Micron 114: 42–61.

[31] [31] Schindelin, J., Arganda-Carreras, I. Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P. and Albert A. (2012). FIJI: An open-source platform for biological-image analysis, Nature Methods 9: 676–682.

[32] [32] Skobel, M., Kowal, M., Korbicz, J. and Obuchowicz, A. (2019). Cell nuclei segmentation using marker-controlled watershed and Bayesian object recognition, in E. Piętka et al. (Eds), International Conference on Information Technologies in Biomedicine, Springer International Publishing, Cham, pp. 407–418.

[33] [33] Spanhol, F.A., Oliveira, L.S., Petitjean, C. and Heutte, L. (2016). Breast cancer histopathological image classification using convolutional neural networks, International Joint Conference on Neural Networks, Vancouver, Canada, pp. 2560–2567.

[34] [34] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society: Series B (Methodological) 58(1): 267–288.

[35] [35] Veta,M., van Diest, P.J., Kornegoor, R., Huisman, A., Viergever, M.A. and Pluim, J.P.W. (2013). Automatic nuclei segmentation in H stained breast cancer histopathology images, PLOS ONE 8(7):e70221.

[36] [36] Vincent, L. and Soille, P. (1991). Watersheds in digital spaces: An efficient algorithm based on immersion simulations, IEEE Transactions on Pattern Analysis and Machine Intelligence 13(6): 583–598.

[37] [37] Wang, D., Khosla, A., Gargeya, R., Irshad, H. and Beck, A.H. (2016). Deep learning for identifying metastatic breast cancer, arXiv: 1606.05718.

[38] [38] Xing, F. and Yang, L. (2016). Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: A comprehensive review, IEEE Reviews in Biomedical Engineering 9: 234–263.

[39] [39] Yang, X., Li, H. and Zhou, X. (2006). Nuclei segmentation using marker-controlled watershed, tracking using mean-shift, and Kalman filter in time-lapse microscopy, IEEE Transactions on Circuits and Systems I: Regular Papers 53(11): 2405–2414.