Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2021_31_1_a1, author = {Veremey, Evgeny I.}, title = {An approximate solution of the affine-quadratic control problem based on the concept of optimal damping}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {5--15}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a1/} }
TY - JOUR AU - Veremey, Evgeny I. TI - An approximate solution of the affine-quadratic control problem based on the concept of optimal damping JO - International Journal of Applied Mathematics and Computer Science PY - 2021 SP - 5 EP - 15 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a1/ LA - en ID - IJAMCS_2021_31_1_a1 ER -
%0 Journal Article %A Veremey, Evgeny I. %T An approximate solution of the affine-quadratic control problem based on the concept of optimal damping %J International Journal of Applied Mathematics and Computer Science %D 2021 %P 5-15 %V 31 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a1/ %G en %F IJAMCS_2021_31_1_a1
Veremey, Evgeny I. An approximate solution of the affine-quadratic control problem based on the concept of optimal damping. International Journal of Applied Mathematics and Computer Science, Tome 31 (2021) no. 1, pp. 5-15. http://geodesic.mathdoc.fr/item/IJAMCS_2021_31_1_a1/
[1] [1] Aguilar-Ibanez, C. and Suarez-Castanon, M.S. (2019). A trajectory planning based controller to regulate an uncertain overhead crane system, International Journal of Applied Mathematics and Computer Science 29(4): 693–702, DOI: 10.2478/amcs-2019-0051.
[2] [2] Balakrishnan, A. (1966). On the controllability of a nonlinear system, Proceedings of the National Academy of Sciences of the USA 55(3): 465–468.
[3] [3] Collado, J., Lozano, R. and Fantoni, I. (2000). Control of convey-crane based on passivity, Proceedings of the American Control Conference, ACC 2000, Chicago, USA, pp. 1260–1264.
[4] [4] Do, K. and Pan, J. (2009). Control of Ships and Underwater Vehicles. Design for Underactuated and Nonlinear Marine Systems, Springer-Verlag, London.
[5] [5] Fantoni, I. and Lozano, R. (2002). Non-linear Control for Underactuated Mechanical Systems, Springer-Verlag, London.
[6] [6] Fossen, T.I. (1994). Guidance and Control of Ocean Vehicles, John Wiley and Sons, New York.
[7] [7] Geering, H.P. (2007). Optimal Control with Engineering Applications, Springer-Verlag, Berlin/Heidelberg.
[8] [8] Hahn, W. and Baartz, A.P. (1967). Stability of Motion, Springer, London.
[9] [9] Khalil, H. (2002). Nonlinear Systems, Prentice-Hall, Englewood Cliffs.
[10] [10] Lewis, F.L., Vrabie, D.L. and Syrmos, V.L. (2012). Optimal Control, John Wiley and Sons, Hoboken.
[11] [11] Lukes, D.L. (1969). Optimal regulation of nonlinear dynamic systems, SIAM Journal on Control and Optimization 7(1): 75–100.
[12] [12] Sepulchre, R., Jankovic, M. and Kokotovic, P. (1997). Constructive Nonlinear Control, Springer, New York.
[13] [13] Slotine, J. and Li, W. (1991). Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs.
[14] [14] Sontag, E.D. (1998). Mathematical Control Theory: Deterministic Finite Dimensional Systems, 2nd Edition, Springer, New York.
[15] [15] Sotnikova, M.V. and Veremey, E.I. (2013). Dynamic positioning based on nonlinear MPC, IFAC Proceedings Volumes 9(1): 31–36.
[16] [16] Veremey, E.I. (2017). Separate filtering correction of observer-based marine positioning control laws, International Journal of Control 90(8): 1561–1575.
[17] [17] Veremey, E.I. (2019). Special spectral approach to solutions of SISO LTI h-optimization problems, International Journal of Automation and Computing 16(1): 112–128.
[18] [18] Veremey, E.I. and Sotnikova, M.V. (2019). Optimization approach to guidance and control of marine vehicles, WIT Transactions on the Built Environment 187(1): 45–56.
[19] [19] Wasilewski, M., Pisarski, D., Konowrocki, R. and Bayer, C.I. (2019). A new efficient adaptive control of torsional vibrations induced by switched nonlinear disturbances, International Journal of Applied Mathematics and Computer Science 29(2): 285–303, DOI: 10.2478/amcs-2019-0021.
[20] [20] Zubov, V.I. (1962). Oscillations in Nonlinear and Controlled Systems, Sudpromgiz, Leningrad, (in Russian).
[21] [21] Zubov, V.I. (1966). Theory of Optimal Control of Ships and Other Moving Objects, Sudpromgiz, Leningrad, (in Russian).
[22] [22] Zubov, V.I. (1978). Théorie de la Commande, Mir, Moscow.