Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2020_30_4_a9, author = {Wi\'sniewska, Joanna and Sawerwain, Marek and Obuchowicz, Andrzej}, title = {Basic quantum circuits for classification and approximation tasks}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {733--744}, publisher = {mathdoc}, volume = {30}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_4_a9/} }
TY - JOUR AU - Wiśniewska, Joanna AU - Sawerwain, Marek AU - Obuchowicz, Andrzej TI - Basic quantum circuits for classification and approximation tasks JO - International Journal of Applied Mathematics and Computer Science PY - 2020 SP - 733 EP - 744 VL - 30 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_4_a9/ LA - en ID - IJAMCS_2020_30_4_a9 ER -
%0 Journal Article %A Wiśniewska, Joanna %A Sawerwain, Marek %A Obuchowicz, Andrzej %T Basic quantum circuits for classification and approximation tasks %J International Journal of Applied Mathematics and Computer Science %D 2020 %P 733-744 %V 30 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_4_a9/ %G en %F IJAMCS_2020_30_4_a9
Wiśniewska, Joanna; Sawerwain, Marek; Obuchowicz, Andrzej. Basic quantum circuits for classification and approximation tasks. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 4, pp. 733-744. http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_4_a9/
[1] [1] Augusto, L.M. (2017). Many-Valued Logics: A Mathematical and Computational Introduction, College Publications, London.
[2] [2] Bertlmann, R. and Krammer, P. (2008). Bloch vectors for qudits, Journal of Physics A: Mathematical and Theoretical 41(23): 235303, DOI: 10.1088/1751-8113/41/23/235303.
[3] [3] Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N. and Lloyd, S. (2017). Quantum machine learning, Nature 549(7671): 195–202, DOI: 10.1038/nature23474.
[4] [4] Gibney, E. (2019). Hello quantum world! Google publishes landmark quantum supremacy claim, Nature 574(7779): 461–462, DOI: 10.1038/d41586-019-03213-z.
[5] [5] IBM (2019). Q Experience, https://quantum-computing.ibm.com/.
[6] [6] Kołaczek, D., Spisak, B.J. and Wołoszyn, M. (2019). The phase-space approach to time evolution of quantum states in confined systems: The spectral split-operator method, International Journal of Applied Mathematics and Computer Science 29(3): 439–451, DOI: 10.2478/amcs-2019-0032.
[7] [7] Li, J., Yang, X., Peng, X. and Sun, C. (2017). Hybrid quantum-classical approach to quantum optimal control, Physical Review Letters 118(15): 150503, DOI: 10.1103/PhysRevLett.118.150503.
[8] [8] Li, Z. and Li, P. (2015). Clustering algorithm of quantum self-organization network, Open Journal of Applied Sciences 05(6): 270–278, DOI: 10.4236/ojapps.2015.56028.
[9] [9] MacMahon, D. (2007). Quantum Computing Explained, John Wiley, Hoboken, NJ.
[10] [10] Mitarai, K., Negoro, M., Kitagawa, M. and Fujii, K. (2018). Quantum circuit learning, Physical Review Letters 98(3): 032309, DOI: 10.1103/PhysRevA.98.032309.
[11] [11] Narayanan, A. and Menneer, T. (2000). Quantum artificial neural network architectures and components, Information Sciences 128(3–4): 231–255, DOI: 10.1016/S0020-0255(00)00055-4.
[12] [12] Nielsen, M. and Chuang, I. (2010). Quantum Computation and Quantum Information, 10th Anniversary Edition, Cambridge University Press, Cambridge.
[13] [13] Ortigoso, J. (2018). Twelve years before the quantum no-cloning theorem, American Journal of Physics 86(3): 201–205, DOI: 10.1119/1.5021356.
[14] [14] Park, J. (1970). The concept of transition in quantum mechanics, Foundations of Physics 1(1): 23–33, DOI: 10.1007/BF00708652.
[15] [15] Pati, A.K. and Braunstein, S.L. (2000). Impossibility of deleting an unknown quantum state, Nature 404(6774): 164–165, DOI: 10.1038/35004532.
[16] [16] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python, Journal of Machine Learning Research 12: 2825–2830, DOI: 10.5555/1953048.2078195.
[17] [17] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E. and Latorre, J. (2020). Data re-uploading for a universal quantum classifier, Quantum 4: 226, DOI: 10.22331/q-2020-02-06-226.
[18] [18] Rigetti (2019). Quantum Computing Systems, https://www.rigetti.com/systems.
[19] [19] Schuld, M., Sinayskiy, I. and Petruccione, F. (2014). Quantum computing for pattern classification, in D.-N. Pham and S.-B. Park (Eds), PRICAI 2014: Trends in Artificial Intelligence, Springer, Cham, pp. 208–220, DOI: 10.1007/978-3-319-13560-1_17.
[20] [20] Schuld, M., Sinayskiy, I. and Petruccione, F. (2015). An introduction to quantum machine learning, Contemporary Physics 56(2): 172–185, DOI: 10.1080/00107514.2014.964942.
[21] [21] Veenman, C. and Reinders, M. (2005). The nearest sub-class classifier: a compromise between the nearest mean and nearest neighbor classifier, IEEE Transactions on Pattern Analysis and Machine Intelligence 27(9): 1417–1429, DOI: 10.1109/TPAMI.2005.187.
[22] [22] Weigang, L. (1998). A study of parallel self-organizing map, arXiv: quant-ph/9808025v3.
[23] [23] Wiebe, N., Kapoor, A. and Svore, M. (2015). Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning, Quantum Information and Computation 15(3–4): 316–356.
[24] [24] Wiśniewska, J. and Sawerwain, M. (2020). Simple quantum circuits for data classification, in N.T. Nguyen et al. (Eds), Intelligent Information and Database Systems, Springer, Cham, pp. 392–403, DOI: 0.1007/978-3-030-41964-6_34.
[25] [25] Wootters, W. and Zurek, W. (1982). A single quantum cannot be cloned, Nature 299(5886): 802–803, DOI: 10.1038/299802a0.
[26] [26] Zoufal, C., Lucchi, A. and Woerner, S. (2019). Quantum generative adversarial networks for learning and loading random distributions, Quantum Information 5(1): 103, DOI: 10.1038/s41534-019-0223-2.