Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2020_30_4_a6, author = {Altuntas, Volkan and Gok, Murat and Kocal, Osman Hilmi}, title = {Response of {Lyapunov} exponents to diffusion state of biological networks}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {689--702}, publisher = {mathdoc}, volume = {30}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_4_a6/} }
TY - JOUR AU - Altuntas, Volkan AU - Gok, Murat AU - Kocal, Osman Hilmi TI - Response of Lyapunov exponents to diffusion state of biological networks JO - International Journal of Applied Mathematics and Computer Science PY - 2020 SP - 689 EP - 702 VL - 30 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_4_a6/ LA - en ID - IJAMCS_2020_30_4_a6 ER -
%0 Journal Article %A Altuntas, Volkan %A Gok, Murat %A Kocal, Osman Hilmi %T Response of Lyapunov exponents to diffusion state of biological networks %J International Journal of Applied Mathematics and Computer Science %D 2020 %P 689-702 %V 30 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_4_a6/ %G en %F IJAMCS_2020_30_4_a6
Altuntas, Volkan; Gok, Murat; Kocal, Osman Hilmi. Response of Lyapunov exponents to diffusion state of biological networks. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 4, pp. 689-702. http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_4_a6/
[1] [1] Abarbanel, H. (2012). Analysis of Observed Chaotic Data, Springer Science, New York, NY.
[2] [2] Abarbanel, H.D., Brown, R., Sidorowich, J.J. and Tsimring, L.S. (1993). The analysis of observed chaotic data in physical systems, Reviews of Modern Physics 65(4): 1331.
[3] [3] Albert, R. and Barabási, A.-L. (2002). Statistical mechanics of complex networks, Reviews of Modern Physics 74(1): 47.
[4] [4] Alm, E. and Arkin, A.P. (2003). Biological networks, Current Opinion in Structural Biology 13(2): 193–202.
[5] [5] Altuntas¸, V. and G¨ok, M. (2017). The stability and fragility of biological networks: Eukaryotic model organism saccharomyces cerevisiae, International Conference on Computer Science and Engineering (UBMK), Antalya, Turkey, pp. 116–118.
[6] [6] Altuntas¸, V. and Gök, M. (2020). Protein–protein etkileşimi tespit yöntemleri, veri tabanları ve veri güvenilirliği, Avrupa Bilim ve Teknoloji Dergisi (19): 722–733.
[7] [7] Altuntas, V., Gök, M. and Kahveci, T. (2018). Stability analysis of biological networks’ diffusion state, IEEE/ACM Transactions on Computational Biology and Bioinformatics 11(4): 1406–1418.
[8] [8] Borgatti, S.P. (2005). Centrality and network flow, Social Networks 27(1): 55–71.
[9] [9] Can, T., Çamoğlu, O. and Singh, A.K. (2005). Analysis of protein-protein interaction networks using random walks, Proceedings of the 5th International Workshop on Bioinformatics, Chicago, IL, USA, pp. 61–68.
[10] [10] Cao, L. (1997). Practical method for determining the minimum embedding dimension of a scalar time series, Physica D: Nonlinear Phenomena 110(1–2): 43–50.
[11] [11] Cao, M., Zhang, H., Park, J., Daniels, N.M., Crovella, M.E., Cowen, L.J. and Hescott, B. (2013). Going the distance for protein function prediction: A new distance metric for protein interaction networks, PloS One 8(10): e76339.
[12] [12] Chatr-Aryamontri, A., Breitkreutz, B.-J., Oughtred, R., Boucher, L., Heinicke, S., Chen, D., Stark, C., Breitkreutz, A., Kolas, N., O’Donnell, L., Reguly, T., Nixon, J., Ramage, L., Winter, A., Sellam, A., Chang, C., Hirschman, J., Theesfeld, C., Rust, J., Livstone, M.S., Dolinski, K. and Tyers, M. (2015). The BioGRID interaction database: 2015 Update, Nucleic Acids Research 43(D1): D470–D478.
[13] [13] Cho, H., Berger, B. and Peng, J. (2015). Diffusion component analysis: Unraveling functional topology in biological networks, International Conference on Research in Computational Molecular Biology, Warsaw, Poland, pp. 62–64.
[14] [14] Erten, S., Bebek, G. and Koyutürk, M. (2011). VAVIEN: An algorithm for prioritizing candidate disease genes based on topological similarity of proteins in interaction networks, Journal of Computational Biology 18(11): 1561–1574.
[15] [15] Freeman, L.C. (1977). A set of measures of centrality based on betweenness, Sociometry 40(1): 35–41.
[16] [16] Freeman, L.C., Borgatti, S.P. and White, D.R. (1991). Centrality in valued graphs: A measure of betweenness based on network flow, Social Networks 13(2): 141–154.
[17] [17] Gabr, H. and Kahveci, T. (2015). Signal reachability facilitates characterization of probabilistic signaling networks, BMC Bioinformatics 16(17): S6.
[18] [18] Gabr, H., Rivera-Mulia, J.C., Gilbert, D.M. and Kahveci, T. (2015). Computing interaction probabilities in signaling networks, EURASIP Journal on Bioinformatics and Systems Biology 2015(1): 10.
[19] [19] Gao, J. (2012). Multiscale analysis of biological data by scale-dependent Lyapunov exponent, Frontiers in Physiology 2: 110.
[20] [20] Gök, M., Koçal, O.H. and Genç, S. (2016). Prediction of disordered regions in proteins using physicochemical properties of amino acids, International Journal of Peptide Research and Therapeutics 22(1): 31–36.
[21] [21] Hagberg, A., Swart, P. and Schult, D. (2008). Exploring network structure, dynamics, and function using network, Technical report, Los Alamos National Lab., Los Alamos, NM.
[22] [22] Han, Q. and Wang, P. (2007). Estimation of the largest Lyapunov exponent of the HRV signals, Journal of Biomedical Engineering 24(4): 732–735.
[23] [23] He, H., Lin, D., Zhang, J., Wang, Y.-P. and Deng, H.-W. (2017). Comparison of statistical methods for subnetwork detection in the integration of gene expression and protein interaction network, BMC Bioinformatics 18(1), Article no. 149.
[24] [24] Hegger, R., Kantz, H. and Schreiber, T. (1999). Practical implementation of nonlinear time series methods: The TISEAN package, Chaos: An Interdisciplinary Journal of Nonlinear Science 9(2): 413–435.
[25] [25] Holme, P., Kim, B.J., Yoon, C.N. and Han, S.K. (2002). Attack vulnerability of complex networks, Physical Review E 65(5): 056109.
[26] [26] Jeong, H., Qian, X. and Yoon, B.-J. (2016). Effective comparative analysis of protein–protein interaction networks by measuring the steady-state network flow using a Markov model, BMC Bioinformatics 17(13): 395.
[27] [27] Kennel, M.B., Brown, R. and Abarbanel, H.D. (1992). Determining embedding dimension for phase-space reconstruction using a geometrical construction, Physical Review A 45(6): 3403.
[28] [28] Koçal, O.H., Yuruklu, E. and Avcibas, I. (2008). Chaotic-type features for speech steganalysis, IEEE Transactions on Information Forensics and Security 3(4): 651–661.
[29] [29] Köhler, S., Bauer, S., Horn, D. and Robinson, P.N. (2008). Walking the interactome for prioritization of candidate disease genes, The American Journal of Human Genetics 82(4): 949–958.
[30] [30] Li, F., Li, P., Xu, W., Peng, Y., Bo, X. and Wang, S. (2010). Perturbationanalyzer: A tool for investigating the effects of concentration perturbation on protein interaction networks, Bioinformatics 26(2): 275–277.
[31] [31] Li, Y., Wang, H. and Meng, X. (2019). Almost periodic synchronization of fuzzy cellular neural networks with time-varying delays via state-feedback and impulsive control, International Journal of Applied Mathematics and Computer Science 29(2): 337–349, DOI: 10.2478/amcs-2019-0025.
[32] [32] Liu, K., Wang, H. and Xiao, J. (2015). The multivariate largest Lyapunov exponent as an age-related metric of quiet standing balance, Computational and Mathematical Methods in Medicine 2015, Article ID 309756.
[33] [33] Nazarimehr, F., Jafari, S., Golpayegani, S.M.R.H. and Sprott, J. (2017). Can Lyapunov exponent predict critical transitions in biological systems?, Nonlinear Dynamics 88(2): 1493–1500.
[34] [34] Newman, M. (2018). Networks, Oxford University Press, Oxford.
[35] [35] Perez, C. and Germon, R. (2016). Graph creation and analysis for linking actors: Application to social data, in R. Layton and P. Watters (Eds), Automating Open Source Intelligence, Elsevier, Waltham, pp. 103–129.
[36] [36] Ruiz, D. and Finke, J. (2019). Lyapunov-based anomaly detection in preferential attachment networks, International Journal of Applied Mathematics and Computer Science 29(2): 363–373, DOI: 10.2478/amcs-2019-0027.
[37] [37] Sano, M. and Sawada, Y. (1985). Measurement of the Lyapunov spectrum from a chaotic time series, Physical Review Letters 55(10): 1082.
[38] [38] Serletis, A., Shahmoradi, A. and Serletis, D. (2007). Effect of noise on estimation of Lyapunov exponents from a time series, Chaos, Solitons Fractals 32(2): 883–887.
[39] [39] Stelling, J., Sauer, U., Szallasi, Z., Doyle, F.J. and Doyle, J. (2004). Robustness of cellular functions, Cell 118(6): 675–685.
[40] [40] Stumpf, M.P. and Wiuf, C. (2010). Incomplete and noisy network data as a percolation process, Journal of the Royal Society Interface 7(51): 1411–1419.
[41] [41] Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K.P., Kuhn, M., Bork, P., Jensen, L.J., von Mering, C. (2014). STRING v10: Protein–protein interaction networks, integrated over the tree of life, Nucleic Acids Research 43(D1): D447–D452.
[42] [42] Turinsky, A.L., Razick, S., Turner, B., Donaldson, I.M. and Wodak, S.J. (2010). Literature curation of protein interactions: Measuring agreement across major public databases, Database 2010: baq026, DOI:10.1093/database/baq026.
[43] [43] Vocaturo, E. and Veltri, P. (2017). On the use of networks in biomedicine, Procedia Computer Science 110: 498–503.
[44] [44] Watts, D.J. and Strogatz, S.H. (1998). Collective dynamics of ‘small-world’ networks, Nature 393(6684): 440.
[45] [45] Yu, D., Kim, M., Xiao, G. and Hwang, T.H. (2013). Review of biological network data and its applications, Genomics Informatics 11(4): 200–210.
[46] [46] Zhang, X., Wang, H. and Yang, Y. (2016). Robustness of indispensable nodes in controlling protein–protein interaction network, arXiv: 1609.02637.