Stability analysis of interconnected discrete-time fractional-order LTI state-space systems
International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 4, pp. 649-658.

Voir la notice de l'article provenant de la source Library of Science

In this paper, a stability analysis of interconnected discrete-time fractional-order (FO) linear time-invariant (LTI) state-space systems is presented. A new system is formed by interconnecting given FO systems using cascade, feedback, parallel interconnections. The stability requirement for such a system is that all zeros of a non-polynomial characteristic equation must be within the unit circle on the complex z-plane. The obtained theoretical results lead to a numerical test for stability evaluation of interconnected FO systems. It is based on modern root-finding techniques on the complex plane employing triangulation of the unit circle and Cauchy’s argument principle. The developed numerical test is simple, intuitive and can be applied to a variety of systems. Furthermore, because it evaluates the function related to the characteristic equation on the complex plane, it does not require computation of state-matrix eigenvalues. The obtained numerical results confirm the efficiency of the developed test for the stability analysis of interconnected discrete-time FO LTI state-space systems.
Keywords: stability analysis, discrete time system, fractional order system
Mots-clés : analiza stabilności, układ czasu dyskretnego, układ rzędu ułamkowego
@article{IJAMCS_2020_30_4_a3,
     author = {Grzymkowski, {\L}ukasz and Trofimowicz, Damian and Stefa\'nski, Tomasz P.},
     title = {Stability analysis of interconnected discrete-time fractional-order {LTI} state-space systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {649--658},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_4_a3/}
}
TY  - JOUR
AU  - Grzymkowski, Łukasz
AU  - Trofimowicz, Damian
AU  - Stefański, Tomasz P.
TI  - Stability analysis of interconnected discrete-time fractional-order LTI state-space systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2020
SP  - 649
EP  - 658
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_4_a3/
LA  - en
ID  - IJAMCS_2020_30_4_a3
ER  - 
%0 Journal Article
%A Grzymkowski, Łukasz
%A Trofimowicz, Damian
%A Stefański, Tomasz P.
%T Stability analysis of interconnected discrete-time fractional-order LTI state-space systems
%J International Journal of Applied Mathematics and Computer Science
%D 2020
%P 649-658
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_4_a3/
%G en
%F IJAMCS_2020_30_4_a3
Grzymkowski, Łukasz; Trofimowicz, Damian; Stefański, Tomasz P. Stability analysis of interconnected discrete-time fractional-order LTI state-space systems. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 4, pp. 649-658. http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_4_a3/

[1] [1] Bingi, K., Ibrahim, R., Karsiti, M.N., Hassam, S.M. and Harindran, V.R. (2019). Frequency response based curve fitting approximation of fractional-order PID controllers, International Journal of Applied Mathematics and Computer Science 29(2): 311–326, DOI: 10.2478/amcs-2019-0023.

[2] [2] Brogan, W.L. (1991). Modern Control Theory, 3rd Edn, Prentice-Hall, Upper Saddle River, NJ.

[3] [3] Busłowicz, M. (2012). Simple analytic conditions for stability of fractional discrete-time linear systems with diagonal state matrix, Bulletin of the Polish Academy of Sciences: Technical Sciences 60(4): 809–814.

[4] [4] Busłowicz, M. and Ruszewski, A. (2013). Necessary and sufficient conditions for stability of fractional discrete-time linear state-space systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 61(4): 779–786.

[5] [5] Busłowicz, M. and Kaczorek, T. (2009). Simple conditions for practical stability of positive fractional discrete-time linear systems, International Journal of Applied Mathematics and Computer Science 19(2): 263–269, DOI: 10.2478/v10006-009-0022-6.

[6] [6] Delves, L.M. and Lyness, J.N. (1967). A numerical method for locating the zeros of an analytic function, Mathematics of Computation 21: 543–560.

[7] [7] Duren, P., Hengartner, W. and Laugesen, R.S. (1996). The argument principle for harmonic functions, The American Mathematical Monthly 103(5): 411–415.

[8] [8] Grzymkowski, L. and Stefański, T.P. (2018a). A new approach to stability evaluation of digital filters, 25th International Conference Mixed Design of Integrated Circuits and Systems (MIXDES), Gdynia, Poland, pp. 351–354.

[9] [9] Grzymkowski, L. and Stefański, T.P. (2018b). Numerical test for stability evaluation of discrete-time systems, 23rd International Conference on Methods Models in Automation Robotics (MMAR), Międzyzdroje, Poland, pp. 803–808.

[10] [10] Jury, E.I. (1964). Theory and Application of the Z-Transform Method, Wiley, New York, NY.

[11] [11] Kaczorek, T. (2008). Practical stability of positive fractional discrete-time linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(4): 313–317.

[12] [12] Kaczorek, T. and Ruszewski, A. (2020). Application of the Drazin inverse to the analysis of pointwise completeness and pointwise degeneracy of descriptor fractional linear continuous-time systems, International Journal of Applied Mathematics and Computer Science 30(2): 219–223, DOI: 10.34768/amcs-2020-0017.

[13] [13] Kowalczyk, P. (2018a). Global complex roots and poles finding algorithm based on phase analysis for propagation and radiation problems, IEEE Transactions on Antennas and Propagation 66(12): 7198–7205.

[14] [14] Kowalczyk, P. (2018b). GRPF: Global complex roots and poles finding algorithm, https://github.com/PioKow/GRPF.

[15] [15] Krantz, S.G. (1999). Handbook of Complex Variables, 1st Edn, Birkhäuser, Boston, MA.

[16] [16] Matlab (2017). Matlab: User’s Guide, Version 9.2.0 (R2017a), The MathWorks Inc., Natick, MA.

[17] [17] Mercorelli, P. (2017a). Combining flatness based feedforward action with a fractional PI regulator to control the intake valve engine, 18th International Carpathian Control Conference (ICCC), Sinaia, Romania, pp. 456–461.

[18] [18] Mercorelli, P. (2017b). A discrete-time fractional order PI controller for a three phase synchronous motor using an optimal loop shaping approach, in A. Babiarz et al. (Eds), Theory and Applications of Non-Integer Order Systems, Springer, Cham, pp. 477–487.

[19] [19] Mozyrska, D. and Girejko, E. (2013). Overview of fractional h-difference operators, in A. Almeida, et al. (Eds), Advances in Harmonic Analysis and Operator Theory, Springer, Basel, pp. 253–268.

[20] [20] Ogata, K. (1987). Discrete-Time Control Systems, Prentice-Hall, Upper Saddle River, NJ.

[21] [21] Oppenheim, A.V., Schafer, R.W. and Buck, J.R. (1999). Discrete-Time Signal Processing, 2nd Edn, Prentice-Hall, Upper Saddle River, NJ.

[22] [22] Ostalczyk, P. (2012). Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains, International Journal of Applied Mathematics and Computer Science 22(3): 533–538, DOI: 10.2478/v10006-012-0040-7.

[23] [23] Samko, S.G., Kilbas, A.A. and Marichev, O.I. (1993). Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, NY.

[24] [24] Stanislawski, R. and Latawiec, K. (2013a). Stability analysis for discrete-time fractional-order LTI state-space systems. Part I: New necessary and sufficient conditions for the asymptotic stability, Bulletin of the Polish Academy of Sciences: Technical Sciences 61(2): 353–361.

[25] [25] Stanislawski, R. and Latawiec, K. (2013b). Stability analysis for discrete-time fractional-order LTI state-space systems. Part II: New stability criterion for FD-based systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 61(2): 363–370.

[26] [26] Vaccaro, R.J. (1995). Digital Control, 1st Edn, McGraw-Hill, New York, NY.

[27] [27] Weisstein, E.W. (2019a). Argument principle, Mathworld—A Wolfram Web Resource, http://mathworld.wolfram.com/ArgumentPrinciple.html.

[28] [28] Weisstein, E.W. (2019b). Delaunay triangulation, Mathworld—A Wolfram Web Resource, http://mathworld.wolfram.com/DelaunayTriangulation.html.

[29] [29] Wilkinson, J.H. (1994). Rounding Errors in Algebraic Processes, Dover, New York, NY.