Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2020_30_4_a2, author = {Kaczorek, Tadeusz and Sajewski, {\L}ukasz}, title = {Pointwise completeness and pointwise degeneracy of fractional standard and descriptor linear continuous-time systems with different fractional orders}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {641--647}, publisher = {mathdoc}, volume = {30}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_4_a2/} }
TY - JOUR AU - Kaczorek, Tadeusz AU - Sajewski, Łukasz TI - Pointwise completeness and pointwise degeneracy of fractional standard and descriptor linear continuous-time systems with different fractional orders JO - International Journal of Applied Mathematics and Computer Science PY - 2020 SP - 641 EP - 647 VL - 30 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_4_a2/ LA - en ID - IJAMCS_2020_30_4_a2 ER -
%0 Journal Article %A Kaczorek, Tadeusz %A Sajewski, Łukasz %T Pointwise completeness and pointwise degeneracy of fractional standard and descriptor linear continuous-time systems with different fractional orders %J International Journal of Applied Mathematics and Computer Science %D 2020 %P 641-647 %V 30 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_4_a2/ %G en %F IJAMCS_2020_30_4_a2
Kaczorek, Tadeusz; Sajewski, Łukasz. Pointwise completeness and pointwise degeneracy of fractional standard and descriptor linear continuous-time systems with different fractional orders. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 4, pp. 641-647. http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_4_a2/
[1] [1] Bingi, K., Ibrahim, R., Karsiti, M.N., Hassam, S.M. and Harindran, V.R. (2019). Frequency response based curve fitting approximation of fractional-order PID controllers, International Journal of Applied Mathematics and Computer Science 29(2): 311–326, DOI: 10.2478/amcs-2019-0023.
[2] [2] Borawski, K. (2018). Analysis of the positivity of descriptor continuous-time linear systems by the use of Drazin inverse matrix method, in R. Szewczyk et al. (Eds), Automation 2018, Springer, Cham, pp. 172–182.
[3] [3] Busłowicz, M. (2012). Stability analysis of continuous-time linear systems consisting of n subsystems with different fractional orders, Bulletin of the Polish Academy of Sciences: Technical Sciences 60(2): 279–284.
[4] [4] Campbell, S.L., Meyer, C.D. and Rose, N.J. (1976). Applications of the Drazin inverse to linear systems of differential equations with singular constant coefficients, SIAM Journal on Applied Mathematics 31(3): 411–425.
[5] [5] Dai, L. (1989). Singular Control Systems, Springer, Berlin.
[6] [6] Djennoune, S., Bettayeb, M. and Al-Saggaf, U.M. (2019). Synchronization of fractional-order discrete-time chaotic systems by an exact delayed state reconstructor: Application to secure communication, International Journal of Applied and Mathematics and Computer Science 29(1): 179–194, DOI: 10.2478/amcs-2019-0014.
[7] [7] Dzieliński, A., Sierociuk, D. and Sarwas, G. (2009). Ultracapacitor parameters identification based on fractional order model, Proceedings of the European Control Conference, Budapest, Hungary, pp. 196–200.
[8] [8] Fahmy, M.M. and O’Reilly, J. (1989). Matrix pencil of closed-loop descriptor systems: Infinite-eigenvalues assignment, International Journal of Control 49(4): 1421–1431.
[9] [9] Ferreira, N.M.F. and Machado, J.A.T. (2003). Fractional-order hybrid control of robotic manipulators, 11th International Conference on Advanced Robotics, ICAR, Coimbra, Portugal, pp. 393–398.
[10] [10] Guang-Ren, D. (2010). Analysis and Design of Descriptor Linear Systems, Springer, New York, NY.
[11] [11] Kaczorek, T. (2009). Fractional positive linear systems, Kybernetes: The International Journal of Systems and Cybernetics 38(7/8): 1059–1078.
[12] [12] Kaczorek, T. (2010). Positive linear systems with different fractional orders, Bulletin of the Polish Academy of Sciences: Technical Sciences 58(3): 453–458.
[13] [13] Kaczorek, T. (2011). Selected Problems in Fractional Systems Theory, Springer, Berlin.
[14] [14] Kaczorek, T. (2014). Drazin inverse matrix method for fractional descriptor continuous-time linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 62(3): 409–412.
[15] [15] Kaczorek, T. (2015). Pointwise completeness and pointwise degeneracy of fractional descriptor continuous-time linear systems with regular pencils, Bulletin of the Polish Academy of Sciences: Technical Sciences 63(1): 169–172.
[16] [16] Kaczorek, T. (2019). Absolute stability of a class of fractional positive nonlinear systems, International Journal of Applied Mathematics and Computer Science 29(1): 93–98, DOI: 10.2478/amcs-2019-0007.
[17] [17] Kaczorek, T. (2020). Global stability of positive standard and fractional nonlinear feedback systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 68(2): 285–288.
[18] [18] Kaczorek, T. and Busłowicz, M. (2009). Pointwise completeness and pointwise degeneracy of linear continuous-time fractional order systems, Journal of Automation, Mobile Robotics and Intelligent Systems 3(1): 8–11.
[19] [19] Kaczorek, T. and Rogowski, K. (2015). Fractional Linear Systems and Electrical Circuits, Springer, Cham.
[20] [20] Korobov, A.A. (2017). On pointwise degenerate linear delay-differential systems with nonnilpotent passive matrices, Journal of Applied and Industrial Mathematics 11(3): 369–380.
[21] [21] Kucera, V. and Zagalak, P. (1988). Fundamental theorem of state feedback for singular systems, Automatica 24(5): 653–658.
[22] [22] Metel’skii, A.V. and Karpuk, V.V. (2009). On properties of pointwise degenerate linear autonomous control systems I, Automation and Remote Control 70(10): 1613–1625.
[23] [23] Miller, K.S. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, NY.
[24] [24] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego, CA.
[25] [25] Sajewski, Ł. (2015). Minimum energy control of fractional positive continuous-time linear systems with two different fractional orders and bounded inputs, in K. Latawiec et al. (Eds), Advances in Modelling and Control of Non-integer-Order Systems, Springer, Cham, pp. 171–181.
[26] [26] Sajewski, Ł. (2016). Reachability, observability and minimum energy control of fractional positive continuous-time linear systems with two different fractional orders, Multidimensional Systems and Signal Processing 27(1): 27–41.
[27] [27] Trzasko, W. (2014). Pointwise completeness and pointwise degeneracy of linear continuous-time systems with different fractional orders, in R. Szewczyk et al. (Eds), Recent Advances in Automation, Robotics and Measuring Techniques, Springer, Cham, pp. 307–316.