Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2020_30_4_a0, author = {Chaturantabut, Saifon}, title = {Stabilized model reduction for nonlinear dynamical systems through a contractivity-preserving framework}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {615--628}, publisher = {mathdoc}, volume = {30}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_4_a0/} }
TY - JOUR AU - Chaturantabut, Saifon TI - Stabilized model reduction for nonlinear dynamical systems through a contractivity-preserving framework JO - International Journal of Applied Mathematics and Computer Science PY - 2020 SP - 615 EP - 628 VL - 30 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_4_a0/ LA - en ID - IJAMCS_2020_30_4_a0 ER -
%0 Journal Article %A Chaturantabut, Saifon %T Stabilized model reduction for nonlinear dynamical systems through a contractivity-preserving framework %J International Journal of Applied Mathematics and Computer Science %D 2020 %P 615-628 %V 30 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_4_a0/ %G en %F IJAMCS_2020_30_4_a0
Chaturantabut, Saifon. Stabilized model reduction for nonlinear dynamical systems through a contractivity-preserving framework. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 4, pp. 615-628. http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_4_a0/
[1] [1] Aminzare, Z. and Sontag, E.D. (2013). Logarithmic Lipschitz norms and diffusion-induced instability, Nonlinear Analysis: Theory, Methods Applications 83: 31–49.
[2] [2] Aminzare, Z. and Sontag, E.D. (2014). Contraction methods for nonlinear systems: A brief introduction and ome open problems, 53rd IEEE Conference on Decision and Control, Los Angeles, CA, USA, pp. 3835–3847.
[3] [3] Astrid, P. (2004). Reduction of Process Simulation Models: A Proper Orthogonal Decomposition Approach, PhD thesis, University of Technology, Eindhoven.
[4] [4] Astrid, P., Weiland, S., Willcox, K. and Backx, T. (2008). Missing point estimation in models described by proper orthogonal decomposition, IEEE Transactions on Automatic Control 53(10): 2237–2251.
[5] [5] Banasiak, J. (2020). Logarithmic norms and regular perturbations of differential equations, Annales Universitatis Mariae Curie-Sklodowska, Sectio A: Mathematica 73(2): 5–19.
[6] [6] Barrault, M., Maday, Y., Nguyen, N.C. and Patera, A.T. (2004). An ‘empirical interpolation’ method: Application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathematique 339(9): 667–672.
[7] [7] Bartoszewicz, A. and Adamiak, K. (2019). A reference trajectory based discrete time sliding mode control strategy, International Journal of Applied Mathematics and Computer Science 29(3): 517–525, DOI: 10.2478/amcs-2019-0038.
[8] [8] Benda, M. (1998). A central limit theorem for contractive stochastic dynamical systems, Journal of Applied Probability 35(1): 200–205.
[9] [9] Berkooz, G., Holmes, P. and Lumley, J.L. (1993). The proper orthogonal decomposition in the analysis of turbulent flows, Annual Review of Fluid Mechanics 25(1): 539–575.
[10] [10] Blocher, C., Saveriano, M. and Lee, D. (2017). Learning stable dynamical systems using contraction theory, 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Jeju, South Korea, pp. 124–129.
[11] [11] Carlberg, K., Tuminaro, R. and Boggs, P. (2015). Preserving Lagrangian structure in nonlinear model reduction with application to structural dynamics, SIAM Journal on Scientific Computing 37(2): B153–B184, DOI: 10.1137/140959602.
[12] [12] Chaturantabut, S. (2017). Temporal localized nonlinear model reduction with a priori error estimate, Applied Numerical Mathematics 119: 225–238.
[13] [13] Chaturantabut, S., Beattie, C. and Gugercin, S. (2016). Structure-preserving model reduction for nonlinear port-Hamiltonian systems, SIAM Journal on Scientific Computing 38(5): B837–B865, DOI: 10.1137/15M1055085.
[14] [14] Chaturantabut, S. and Sorensen, D. (2012). A state space error estimate for POD-DEIM nonlinear model reduction, SIAM Journal on Numerical Analysis 50(1): 46–63, DOI: 10.1137/110822724.
[15] [15] Chaturantabut, S. and Sorensen, D.C. (2010). Nonlinear model reduction via discrete empirical interpolation, SIAM Journal on Scientific Computing 32(5): 2737–2764, DOI: 10.1137/090766498.
[16] [16] Chaturantabut, S. and Sorensen, D.C. (2011). Application of POD and DEIM on dimension reduction of non-linear miscible viscous fingering in porous media, Mathematical and Computer Modelling of Dynamical Systems 17(4): 337–353.
[17] [17] Dahlquist, G. (1959). Stability and error bounds in the numerical integration of ordinary differential equations, Transactions of the Royal Institute of Technology (130).
[18] [18] Feng, Z. and Soulaimani, A. (2007). Reduced order modelling based on pod method for 3D nonlinear aeroelasticity, 18th IASTED International Conference on Modelling and Simulation, MS’07, Montreal, Quebec, Canada, pp. 489–494.
[19] [19] Ghasemi, M., Yang, Y., Gildin, E., Efendiev, Y. and Calo, V. (2015). Fast multiscale reservoir simulations using POD-DEIM model reduction, SPE Reservoir Simulation Symposium, Houston, TX, USA.
[20] [20] Ghavamian, F., Tiso, P. and Simone, A. (2017). POD-DEIM model order reduction for strain-softening viscoplasticity, Computer Methods in Applied Mechanics and Engineering 317: 458–479.
[21] [21] Gurka, R., Liberzon, A. and Hetsroni, G. (2006). POD of vorticity fields: A method for spatial characterization of coherent structures, International Journal of Heat and Fluid Flow 27(3): 416–423.
[22] [22] Habibi, J., Moshiri, B. and Sedigh, A.K. (2008). Contractive predictive control of mixed logical dynamical hybrid systems, International Journal of Innovative Computing, Information and Control 4(6): 1283–1298.
[23] [23] Hairer, E., Nørsett, S.P. and Wanner, G. (1993). Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd Edn, Springer, Berlin.
[24] [24] Hinze, M., Kunkel, M., Steinbrecher, A. and Stykel, T. (2012). Model order reduction of coupled circuit-device systems, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 25(4): 362–377, DOI: 10.1002/jnm.840.
[25] [25] Hochman, A., Bond, B. and White, J. (2011). A stabilized discrete empirical interpolation method for model reduction of electrical, thermal, and microelectromechanical systems, 48th ACM/EDAC/IEEE Design Automation Conference (DAC), New York, NY, USA, pp. 540–545.
[26] [26] Intawichai, S. and Chaturantabut, S. (2020). A numerical study of efficient sampling strategies for randomized singular value decomposition, Thai Journal of Mathematics: 371–385.
[27] [27] Isoz, M. (2019). POD-DEIM based model order reduction for speed-up of flow parametric studies, Ocean Engineering 186: 106083.
[28] [28] Jouffroy, J. (2005). Some ancestors of contraction analysis, Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, pp. 5450–5455.
[29] [29] Kellems, A.R., Chaturantabut, S., Sorensen, D.C. and Cox, S.J. (2010). Morphologically accurate reduced order modeling of spiking neurons, Journal of Computational Neuroscience 28(3): 477–494, DOI: 10.1007/s10827-010-0229-4.
[30] [30] Kunisch, K. and Volkwein, S. (2010). Optimal snapshot location for computing POD basis functions, ESAIM: Mathematical Modelling and Numerical Analysis 44(3): 509–529.
[31] [31] Lanata, F. and Grosso, A. D. (2006). Damage detection and localization for continuous static monitoring of structures using a proper orthogonal decomposition of signals, Smart Materials and Structures 15(6): 1811–1829.
[32] [32] Lohmiller,W. and Slotine, J.J.E. (1998). On contraction analysis for non-linear systems, Automatica 34(6): 683–696.
[33] [33] Lohmiller,W. and Slotine, J.J.E. (2000a). Control system design for mechanical systems using contraction theory, IEEE Transactions on Automatic Control 45(5): 984–989.
[34] [34] Lohmiller, W. and Slotine, J.J.E. (2000b). Nonlinear process control using contraction theory, AIChE Journal 46(3): 588–596.
[35] [35] Lozinskii, S.M. (1958). Error estimates for the numerical integration of ordinary differential equations. Part I, Izvestiya Vysshikh Uchebnykh Zavedenii: Matematika 6(5): 52–90, (in Russian).
[36] [36] Peigné, M. and Woess,W. (2011). Stochastic dynamical systems with weak contractivity properties. II: Iteration of Lipschitz mappings, Colloquium Mathematicum 125(1): 55–81.
[37] [37] Pham, Q.-C., Tabareau, N. and Slotine, J.-J. (2009). A contraction theory approach to stochastic incremental stability, IEEE Transactions on Automatic Control 54(4): 816–820.
[38] [38] Rewieński, M.J. (2003). A Trajectory Piecewise-Linear Approach to Model Order Reduction of Nonlinear Dynamical Systems, PhD thesis, Massachusetts Institute of Technology, Cambridge, MA.
[39] [39] Rewienski, M. and White, J. (2001). A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices, International Conference on Computer-Aided Design, San Jose, CA, USA, p. 252.
[40] [40] Rewienski, M. and White, J. (2003). A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices, IEEE Transactions Computer-Aided Design of Integrated Circuits and Systems 22(2): 155–170.
[41] [41] Rewienski, M. and White, J. (2006). Model order reduction for nonlinear dynamical systems based on trajectory piecewise-linear approximations, Linear Algebra and Its Applications 415(2–3): 426–454.
[42] [42] Russo, G. and di Bernardo, M. (2011). On contraction of piecewise smooth dynamical systems, IFAC Proceedings Volumes 44(1): 13299–13304.
[43] [43] Sanjuan, A., Rotondo, D., Nejjari, F. and Sarrate, R. (2019). An LMI-based heuristic algorithm for vertex reduction in LPV systems, International Journal of Applied Mathematics and Computer Science 29(4): 725–737, DOI: 10.2478/amcs-2019-0054.
[44] [44] Schenone, E. (2014). Reduced Order Models, Forward and Inverse Problems in Cardiac Electrophysiology, Thesis, Université Pierre et Marie Curie Paris VI, Paris, https://tel.archives-ouvertes.fr/tel-01092945.
[45] [45] Simpson-Porco, J.W. and Bullo, F. (2014). Contraction theory on Riemannian manifolds, Systems Control Letters 65: 74–80.
[46] [46] Söderlind, G. (1986). Bounds on nonlinear operators in finite-dimensional Banach spaces, Numerische Mathematik 50(1): 27–44, DOI: 10.1007/BF01389666.
[47] [47] Söderlind, G. (2006). The logarithmic norm: History and modern theory, BIT Numerical Mathematics 46(3): 631–652, DOI: 10.1007/s10543-006-0069-9.
[48] [48] Sontag, E.D. (2010). Contractive systems with inputs, in J.C. Willems et al. (Eds), Perspectives in Mathematical System Theory, Control and Signal Processing, Springer, Berlin, pp. 217–228, DOI: 10.1007/978-3-540-93918-4 20.
[49] [49] Stanko, Z.P., Boyce, S.E. and Yeh, W.W.-G. (2016). Nonlinear model reduction of unconfined groundwater flow using POD and DEIM, Advances in Water Resources 97: 130–143.
[50] [50] Sukuntee, N. and Chaturantabut, S. (2019). Model order reduction for Sine–Gordon equation using POD and DEIM, Thai Journal of Mathematics: 222–256.
[51] [51] Sukuntee, N. and Chaturantabut, S. (2020). Parametric nonlinear model reduction using k-means clustering for miscible flow simulation, Journal of Applied Mathematics 2020: 1–12, Article ID 3904606.
[52] [52] Ştefãnescu, R. and Navon, I.M. (2013). POD/DEIM nonlinear model order reduction of an ADI implicit shallow water equations model, Journal of Computational Physics 237: 95–114, DOI: 10.1016/j.jcp.2012.11.035.
[53] [53] Volkwein, S. (2008). Model reduction using proper orthogonal decomposition, Lecture notes, University of Konstanz, Konstanz, http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Vorlesung.pdf.
[54] [54] Walther, A., Griewank, A. and Vogel, O. (2003). ADOL-C: Automatic differentiation using operator overloading in C++, PAMM: Proceedings in Applied Mathematics and Mechanics 2(1): 41–44.
[55] [55] Wang, D. and Xiao, A. (2015). Dissipativity and contractivity for fractional-order systems, Nonlinear Dynamics 80(1–2): 287–294.
[56] [56] Wirtz, D., Sorensen, D. C. and Haasdonk, B. (2014). A posteriori error estimation for deim reduced nonlinear dynamical systems, SIAM Journal on Scientific Computing 36(2): A311–A338.