Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2020_30_3_a9, author = {Salcedo, Jos\'e V. and Mart{\'\i}nez, Miguel and Garc{\'\i}a-Nieto, Sergio and Hilario, Adolfo}, title = {T{\textendash}S fuzzy {BIBO} stabilisation of non-linear systems under persistent perturbations using fuzzy {Lyapunov} functions and {non-PDC} control laws}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {529--550}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a9/} }
TY - JOUR AU - Salcedo, José V. AU - Martínez, Miguel AU - García-Nieto, Sergio AU - Hilario, Adolfo TI - T–S fuzzy BIBO stabilisation of non-linear systems under persistent perturbations using fuzzy Lyapunov functions and non-PDC control laws JO - International Journal of Applied Mathematics and Computer Science PY - 2020 SP - 529 EP - 550 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a9/ LA - en ID - IJAMCS_2020_30_3_a9 ER -
%0 Journal Article %A Salcedo, José V. %A Martínez, Miguel %A García-Nieto, Sergio %A Hilario, Adolfo %T T–S fuzzy BIBO stabilisation of non-linear systems under persistent perturbations using fuzzy Lyapunov functions and non-PDC control laws %J International Journal of Applied Mathematics and Computer Science %D 2020 %P 529-550 %V 30 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a9/ %G en %F IJAMCS_2020_30_3_a9
Salcedo, José V.; Martínez, Miguel; García-Nieto, Sergio; Hilario, Adolfo. T–S fuzzy BIBO stabilisation of non-linear systems under persistent perturbations using fuzzy Lyapunov functions and non-PDC control laws. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 3, pp. 529-550. http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a9/
[1] Abedor, J., Nagpal, K. and Poolla, K. (1996). Linear matrix inequality approach to peak-to-peak gain minimization, International Journal of Robust and Nonlinear Control 6(9–10): 899–927.
[2] Boyd, S., El Ghaoui, L., Feron, E. and Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA.
[3] Cherifi, A. (2017). Contribution à la commande des modèles Takagi–Sugeno: Approche non-quadratique et synthèse D-stable, PhD thesis, Ecole Doctorale Sciences, Technologies, Santè (Reims,Marne).
[4] Delmotte, F., Guerra, T.-M. and Ksantini, M. (2007). Continuous Takagi–Sugeno’s models: Reduction of the number of LMI conditions in various fuzzy control design technics, IEEE Transactions on Fuzzy Systems 15(3): 426–438.
[5] Gahinet, P., Nemirovski, A., Laub, A.J. and Chilali, M. (1995). LMI Control Toolbox, Technical report, The Mathworks Inc., Natick, MA.
[6] Guedes, J.A., Teixeira, M.C.M., Cardim, R. and Assunção, E. (2013). Stability of nonlinear system using Takagi–Sugeno fuzzy models and hyper-rectangle of LMIs, Journal of Control, Automation and Electrical Systems 24(1-2): 46–53.
[7] Guerra, T.M., Bernal, M., Guelton, K. and Labiod, S. (2012). Non-quadratic local stabilization for continuous-time Takagi–Sugeno models, Fuzzy Sets and Systems 201: 40–54.
[8] Guerra, T.M., Kruszewski, A., Vermeiren, L. and Tirmant, H. (2006). Conditions of output stabilization for nonlinear models in the Takagi–Sugeno’s form, Fuzzy Sets and Systems 157(9): 1248–1259.
[9] Guerra, T.M., Sala, A. and Tanaka, K. (2015). Fuzzy control turns 50: 10 Years later, Fuzzy Sets and Systems 281: 168–182.
[10] Guerra, T.M. and Vermeiren, L. (2004). LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi–Sugeno’s form, Automatica 40(5): 823–829.
[11] Hauser, J., Sastry, S. and Kokotovic, P. (1992). Nonlinear control via approximate input-output linearization: The ball and beam example, IEEE Transactions on Automatic Control 37(3): 392–398.
[12] Hu, G., Liu, X., Wang, L. and Li, H. (2017). Relaxed stability and stabilisation conditions for continuous-time Takagi–Sugeno fuzzy systems using multiple-parameterised approach, IET Control Theory Applications 11(6): 774–780.
[13] Hu, G., Liu, X., Wang, L. and Li, H. (2018). An extended approach to controller design of continuous-time Takagi–Sugeno fuzzy model, Journal of Intelligent Fuzzy Systems 34(4): 2235–2246.
[14] Hu, G., Liu, X., Wang, L. and Li, H. (2019). Further study on local analysis of continuous-time T–S fuzzy models with bounded disturbances, IET Control Theory Applications 13(3): 403–410.
[15] Lam, H. (2018). A review on stability analysis of continuous-time fuzzy-model-based control systems: From membership-function-independent to membership-function-dependent analysis, Engineering Applications of Artificial Intelligence 67: 390–408.
[16] Lam, H. K., Xiao, B., Yu, Y., Yin, X., Han, H., Tsai, S.-H. and Chen, C.-S. (2016). Membership-function-dependent stability analysis and control synthesis of guaranteed cost fuzzy-model-based control systems, International Journal of Fuzzy Systems 18(4): 537.
[17] Lee, D.H., Joo, Y.H. and Tak, M.H. (2014). Local H∞ control and invariant set analysis for continuous-time T–S fuzzy systems with magnitude- and energy-bounded disturbances, 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Beijing, China, pp. 1990–1997.
[18] Lee, D.H. and Kim, D.W. (2014). Relaxed LMI conditions for local stability and local stabilization of continuous-time Takagi–Sugeno fuzzy systems, IEEE Transactions on Cybernetics 44(3): 394–405.
[19] Lee, D.H., Park, J.B. and Joo, Y.H. (2012). A fuzzy Lyapunov function approach to estimating the domain of attraction for continuous-time Takagi–Sugeno fuzzy systems, Information Sciences 185(1): 230–248.
[20] Liu, X. and Zhang, Q. (2003). Approaches to quadratic stability conditions and H∞ control designs for T–S fuzzy systems, IEEE Transactions on Fuzzy Systems 11(6): 830–838.
[21] Löfberg, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB, Proceedings of the CACSD Conference, Taipei, Taiwan, pp. 284–289.
[22] Márquez, R., Guerra, T.M., Bernal, M. and Kruszewski, A. (2016). A non-quadratic Lyapunov functional for H∞ control of nonlinear systems via Takagi–Sugeno models, Journal of the Franklin Institute 353(4): 781–796.
[23] Márquez, R., Guerra, T.M., Bernal, M. and Kruszewski, A. (2017). Asymptotically necessary and sufficient conditions for Takagi–Sugeno models using generalized non-quadratic parameter-dependent controller design, Fuzzy Sets and Systems 306: 48–62.
[24] Mozelli, L.A. (2011). Novas Funções de Lyapunov Fuzzy e Soluções Numéricas para Análise de Estabilidade e Controle de Sistemas via Modelagem Takagi–Sugeno: Aproximando os Controles Fuzzy e Não-linear, PhD thesis, Universidade Federal de Minas Gerais, Belo Horizonte.
[25] Mozelli, L.A., Palhares, R.M. and Avellar, G.S. (2009). A systematic approach to improve multiple Lyapunov function stability and stabilization conditions for fuzzy systems, Information Sciences 179(8): 1149–1162.
[26] Pan, J.-T., Guerra, T.M., Fei, S.-M. and Jaadari, A. (2012). Nonquadratic stabilization of continuous T–S fuzzy models: LMI solution for a local approach, IEEE Transactions on Fuzzy Systems 20(3): 594–602.
[27] Qiu, J., Sun, K., Rudas, I. and Gao, H. (2019a). Command filter-based adaptive NN control for MIMO nonlinear systems with full-state constraints and actuator hysteresis, IEEE Transactions on Cybernetics 50(7): 2905–2915.
[28] Qiu, J., Sun, K., Wang, T. and Gao, H. (2019b). Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance, IEEE Transactions on Fuzzy Systems 27(11): 2152–2162.
[29] da Silva Campos, V.C., Nguyen, A.-T. and Palhares, R.M. (2017). A comparison of different upper-bound inequalities for the membership functions derivative, IFACPapersOnLine 50(1): 3001–3006.
[30] Sala, A. and Ariño, C. (2007). Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya’s theorem, Fuzzy Sets and Systems 158(24): 2671–2686.
[31] Salcedo, J. and Martinez, M. (2008). BIBO stabilisation of Takagi–Sugeno fuzzy systems under persistent perturbations using fuzzy output-feedback controllers, IET Control Theory Applications 2(6): 513–523.
[32] Salcedo, J.V., Martínez, M. and García-Nieto, S. (2008). Stabilization conditions of fuzzy systems under persistent perturbations and their application in nonlinear systems, Engineering Applications of Artificial Intelligence 21(8): 1264–1276.
[33] Salcedo, J.V., Martínez, M., García-Nieto, S. and Hilario, A. (2018). BIBO stabilisation of continuous-time Takagi–Sugeno systems under persistent perturbations and input saturation, International Journal of Applied Mathematics and Computer Science 28(3): 457–472, DOI: 10.2478/amcs-2018-0035.
[34] Sanchez Peña, R.S. and Sznaier, M. (1998). Robust Systems, Theory and Applications, JohnWiley and Sons, New York, NY.
[35] Scherer, C. and Weiland, S. (2000). Linear matrix inequalities in control, Technical Report 2, University of Stuttgart, Stuttgart.
[36] Sun, K.,Mou, S., Qiu, J.,Wang, T. and Gao, H. (2019). Adaptive fuzzy control for nontriangular structural stochastic switched nonlinear systems with full state constraints, IEEE Transactions on Fuzzy Systems 27(8): 1587–1601.
[37] Tanaka, K., Hori, T. and Wang, H.O. (2001). A fuzzy Lyapunov approach to fuzzy control system design, Proceedings of the 2001 American Control Conference, Arlington, VA, USA, Vol. 6, pp. 4790–4795.
[38] Tanaka, K., Ikeda, T. and Wang, H. (1998). Fuzzy regulators and fuzzy observers: Relaxed stability conditions and LMI-based designs, IEEE Transactions on Fuzzy Systems 6(2): 250–265.
[39] Tanaka, K. and Wang, H.O. (2001). Fuzzy Control Systems. Design and Analysis. A Linear Matrix Inequality Approach, John Wiley Sons, New York, NY.
[40] Teixeira, M.C.M., Assunçao, E. and Avellar, R.G. (2003). On relaxed LMI-based designs for fuzzy regulators and fuzzy observers, IEEE Transactions on Fuzzy Systems 11(5): 613–623.
[41] Tuan, H., Apkarian, P., Narikiyo, T. and Yamamoto, Y. (2001). Parameterized linear matrix inequality techniques in fuzzy control system design, IEEE Transactions on Fuzzy Systems 9(2): 324–332.
[42] Vafamand, N. (2020a). Global non-quadratic Lyapunov-based stabilization of T–S fuzzy systems: A descriptor approach, Journal of Vibration and Control, DOI: 10.1177/1077546320904817.
[43] Vafamand, N. (2020b). Transient performance improvement of Takagi–Sugeno fuzzy systems by modified non-parallel distributed compensation controller, Asian Journal of Control, DOI: 10.1002/asjc.2340.
[44] Vafamand, N., Asemani, M.H. and Khayatian, A. (2017a). Robust L1 observer-based non-PDC controller design for persistent bounded disturbed T–S fuzzy systems, IEEE Transactions on Fuzzy Systems PP(99): 1.
[45] Vafamand, N., Asemani, M.H. and Khayatian, A. (2017b). TS fuzzy robust L1 control for nonlinear systems with persistent bounded disturbances, Journal of the Franklin Institute 354(14): 5854–5876.
[46] Vafamand, N., Asemani, M.H. and Khayatiyan, A. (2016). A robust L1 controller design for continuous-time TS systems with persistent bounded disturbance and actuator saturation, Engineering Applications of Artificial Intelligence 56: 212–221.
[47] Vafamand, N. and Shasadeghi, M. (2017). More relaxed non-quadratic stabilization conditions using T–S open loop system and control law properties, Asian Journal of Control 19(2): 467–481.
[48] Wang, L., Peng, J., Liu, X. and Zhang, H. (2015). Further study on local stabilization of continuous-time nonlinear systems presented as Takagi–Sugeno fuzzy model, Journal of Intelligent Fuzzy Systems 29(1): 283–292.
[49] Yoneyama, J. (2017). New conditions for stability and stabilizaion of Takagi–Sugeno fuzzy systems, 11th Asian Control Conference (ASCC), Gold Coast, Australia, pp. 2154–2159.