Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2020_30_3_a8, author = {Veseli\'c, Boban and Milosavljevi\'c, \v{C}edomir and Peruni\v{c}i\'c-Dra\v{z}enovi\'c, Branislava and Huseinbegovi\'c, Senad and Petronijevi\'c, Milutin}, title = {Discrete-time sliding mode control of linear systems with input saturation}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {517--528}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a8/} }
TY - JOUR AU - Veselić, Boban AU - Milosavljević, Čedomir AU - Peruničić-Draženović, Branislava AU - Huseinbegović, Senad AU - Petronijević, Milutin TI - Discrete-time sliding mode control of linear systems with input saturation JO - International Journal of Applied Mathematics and Computer Science PY - 2020 SP - 517 EP - 528 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a8/ LA - en ID - IJAMCS_2020_30_3_a8 ER -
%0 Journal Article %A Veselić, Boban %A Milosavljević, Čedomir %A Peruničić-Draženović, Branislava %A Huseinbegović, Senad %A Petronijević, Milutin %T Discrete-time sliding mode control of linear systems with input saturation %J International Journal of Applied Mathematics and Computer Science %D 2020 %P 517-528 %V 30 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a8/ %G en %F IJAMCS_2020_30_3_a8
Veselić, Boban; Milosavljević, Čedomir; Peruničić-Draženović, Branislava; Huseinbegović, Senad; Petronijević, Milutin. Discrete-time sliding mode control of linear systems with input saturation. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 3, pp. 517-528. http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a8/
[1] Abidi, K., Xu, J. and Yu, X. (2007). On the discrete-time integral sliding-mode control, IEEE Transactions on Automatic Control 52(4): 709–715.
[2] Ackermann, J. and Utkin, V. (1998). Sliding mode control design based on Ackermann’s formula, IEEE Transactions on Automatic Control 43(2): 234–237.
[3] Bartolini, G., Ferrara, A., Pisano, A. and Usai, E. (1998). Adaptive reduction of the control effort in chattering-free sliding-mode control of uncertain nonlinear systems, International Journal of Applied Mathematics and Computer Science 8(1): 51–71.
[4] Bartolini, G., Ferrara, A. and Utkin, V.I. (1995). Adaptive sliding mode control in discrete-time systems, Automatica 31(5): 769–773.
[5] Bartolini, G., Pisano, A. and Usai, E. (2001). Digital second-order sliding mode control for uncertain nonlinear systems, Automatica 37(9): 1371–1377.
[6] Bartoszewicz, A. (1998). Discrete-time quasi-sliding mode control strategies, IEEE Transactions on Industrial Electronics 45(4): 633–637.
[7] Bartoszewicz, A. and Adamiak, K. (2019). A reference trajectory based discrete time sliding mode control strategy, International Journal of Applied Mathematics and Computer Science 29(3): 517–525, DOI: 10.2478/amcs-2019-0038.
[8] Bartoszewicz, A. and Latosinski, P. (2017). Reaching law for DSMC systems with relative degree 2 switching variable, International Journal of Control 90(8): 1626–1638.
[9] Bartoszewicz, A. and Leśniewski, P. (2014). An optimal sliding mode congestion controller for connection-oriented communication networks with lossy links, International Journal of Applied Mathematics and Computer Science 24(1): 87–97, DOI: 10.2478/amcs-2014-0007.
[10] Bondarev, A.G., Bondarev, S.A., Kostyleva, N.E. and Utkin, V.I. (1985). Sliding modes in systems with asymptotic state observers, Avtomatika i Telemekhanika 46(6): 5–11.
[11] Castillo, I., Steinberger, M., Fridman, L., Moreno, J.A. and Horn, M. (2016). Saturated super-twisting algorithm: Lyapunov based approach, IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, pp. 269–273.
[12] Chakrabarty, S., Bandyopadhyay, B. and Bartoszewicz, A. (2017). Discrete-time sliding mode control with outputs of relative degree more than one, in A. Bartoszewicz (Ed.), Recent Developments in Sliding Mode Control Theory and Applications, InTech, London, pp. 21–44.
[13] Corradini, M.L., Cristofaro, A. and Orlando, G. (2014). Sliding-mode control of discrete time linear plants with input saturation: Application to a twin-rotor system, International Journal of Control 87(8): 1523–1535.
[14] Draženović, B. (1969). The invariance conditions in variable structure systems, Automatica 5(3): 287–295.
[15] Draženović, B., Milosavljević, Č. and Veselić, B. (2013). Comprehensive approach to sliding mode design and analysis in linear systems, in B. Bandyopadhyay et al. (Eds), Advances in Sliding Mode Control: Concept, Theory and Implementation, Springer, Berlin/Heidelberg, pp. 1–19.
[16] Drakunov, S.V. and Utkin, V.I. (1989). On discrete-time sliding mode, Proceedings of IFAC Symposium on Nonlinear Control Systems Design, Capri, Italy, pp. 484–489.
[17] Emelyanov, S.V. (1957). A method to obtain complex regulation laws using only the error signal or the regulated coordinate and its first derivatives, Avtomatika i Telemekhanika 18(10): 873–885.
[18] Gao, W., Wang, Y. and Homaifa, A. (1995). Discrete-time variable structure control systems, IEEE Transactions on Industrial Electronics 42(2): 117–122.
[19] Ghane, H. and Menhaj, M. B. (2015). Eigenstructure-based analysis for non-linear autonomous systems, IMA Journal of Mathematical Control and Information 32(1): 21–40.
[20] Golkani, M.A., Koch, S., Reichhartinger, M. and Horn, M. (2018). A novel saturated super-twisting algorithm, Systems and Control Letters 119: 52–56.
[21] Golo, G. and Milosavljević, Č. (2000). Robust discrete-time chattering free sliding mode control, Systems and Control Letters 41(1): 19–28.
[22] Golo, G., Schaft, A. and Milosavljević, Č. (2000). Discretization of control law for a class of variable structure control systems, Technical Report 1551, University of Twente, Enschede.
[23] Huber, O., Brogliato, B., Acary, V., Boubakir, A., Plestan, F. and Wang, B. (2016). Experimental results on implicit and explicit time-discretization of equivalent-control-based sliding-mode control, in L. Fridman et al. (Eds), Recent Trends in Sliding Mode Control, IET, London, pp. 207–235.
[24] Koch, S. and Reichhartinger, M. (2019). Discrete-time equivalents of the super-twisting algorithm, Automatica 107: 190–199.
[25] Levant, A. (1993). Sliding order and sliding accuracy in sliding mode control, International Journal of Control 58(6): 1247–1263.
[26] Lješnjanin, M., Peruničić, B., Milosavljević, Č. and Veselić, B. (2011). Disturbance compensation in digital sliding mode, 2011 IEEE EUROCON, International Conference on Computer as a Tool, Lisboa, Portugal, pp. 1–4.
[27] Milosavljević, Č. (1985). General conditions for the existence of quasi-sliding mode on the switching hyper-plane in discrete variable structure systems, Automatic and Remote Control 46(3): 307–314.
[28] Milosavljević, Č., Peruničić-Draženović, B., Veselić, B. and Mitić, D. (2007). A new design of servomechanisms with digital sliding mode, Electrical Engineering 89(3): 233–244.
[29] Milosavljević, Č., Petronijević, M., Veselić, B., Peruničić-Draženović, B. and Huseinbegović, S. (2019). Robust discrete-time quasi-sliding mode based nonlinear PI controller design for control of plants with input saturation, Journal of Control Engineering and Applied Informatics 21(3): 31–41.
[30] Salgado, I., Kamal, S., Bandyopadhyay, B., Chairez, I. and Fridman, L. (2016). Control of discrete time systems based on recurrent super-twisting-like algorithm, ISA Transactions 64: 47–55.
[31] Salgado, I., Kamal, S., Chairez, I., Bandyopadhyay, B. and Fridman, L. (2011). Super-twisting-like algorithm in discrete time nonlinear systems, Proceedings of the 2011 International Conference on Advanced Mechatronic Systems, Zhengzhou, China, pp. 497–502.
[32] Shtessel, Y., Taleb, M. and Plestan, F. (2012). A novel adaptive-gain supertwisting sliding mode controller: methodology and application, Automatica 48(5): 759–769.
[33] Slotine, J.J.E. (1984). Sliding controller design for non-linear systems, International Journal of Control 40(2): 421–434.
[34] Su, W.C., Drakunov, S.V. and Ozguner, U. (2000). An O(T 2) boundary layer in sliding mode for sampled-data systems, IEEE Transactions on Automatic Control 45(3): 482–485.
[35] Utkin, V. (2016). Discussion aspects of higher order sliding mode control, IEEE Transactions on Automatic Control 61(3): 829–833.
[36] Utkin, V.I. (1992). Sliding Modes in Control and Optimization, Springer, Heidelberg.
[37] Yan, Y., Yu, X. and Sun, C. (2015). Discretization behaviors of a super-twisting algorithm based sliding mode control system, 2015 International Workshop on Recent Advances in Sliding Modes (RASM), Istanbul, Turkey, pp. 1–5.