Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2020_30_3_a14, author = {Malinowski, Krzysztof and Karbowski, Andrzej}, title = {Real-time hierarchical predictive risk assessment at the national level: {Mutually} agreed predicted service disruption profiles}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {597--609}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a14/} }
TY - JOUR AU - Malinowski, Krzysztof AU - Karbowski, Andrzej TI - Real-time hierarchical predictive risk assessment at the national level: Mutually agreed predicted service disruption profiles JO - International Journal of Applied Mathematics and Computer Science PY - 2020 SP - 597 EP - 609 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a14/ LA - en ID - IJAMCS_2020_30_3_a14 ER -
%0 Journal Article %A Malinowski, Krzysztof %A Karbowski, Andrzej %T Real-time hierarchical predictive risk assessment at the national level: Mutually agreed predicted service disruption profiles %J International Journal of Applied Mathematics and Computer Science %D 2020 %P 597-609 %V 30 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a14/ %G en %F IJAMCS_2020_30_3_a14
Malinowski, Krzysztof; Karbowski, Andrzej. Real-time hierarchical predictive risk assessment at the national level: Mutually agreed predicted service disruption profiles. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 3, pp. 597-609. http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a14/
[1] Bertsekas, D. and Tsitsiklis, J. (1989). Parallel and Distributed Computation: Numerical Methods, Prentice Hall, Englewood Cliffs, NJ.
[2] EU (2016). Directive (EU) 2016/1148 of the European Parliament and of the Council of the European Union of 6 July 2016 concerning measures for a high common level of security of network and information systems across the union, Official Journal of the European Union 59: L194/1–L194/30.
[3] ENISA (2013). National-level risk assessments an analysis report—Executive summary, Technical report, European Union Agency for Network and Information Security, Heraklion.
[4] Findeisen, W., Bailey, F.N., Brdyś, M., Malinowski, K., Tatjewski, P. and Woźniak, A. (1980). Control and Coordination in Hierarchical Systems, Wiley, Chichester.
[5] Frommer, A. (1991). Generalized nonlinear diagonal dominance and applications to asynchronous iterative methods, Journal of Computational and Applied Mathematics 38(1): 105–124.
[6] Haimes, Y. (2016). Risk Modeling, Assessment, and Management (4th Edition), Wiley, Hoboken, NJ.
[7] Haimes, Y., Santos, J., Crowther, K., Henry, M., Lian, C. and Yan, Z. (2007). Risk analysis in interdependent infrastructure, in E. Goetz and S. Shenoi (Eds), Critical Infrastructure Protection, Springer, Boston, MA, pp. 297–310.
[8] Kalantarnia, M., Khan, F. and Hawboldt, K. (2009). Dynamic risk assessment using failure assessment and Bayesian theory, Journal of Loss Prevention in the Process Industries 22(5): 600–606.
[9] Karbowski, A., Malinowski, K., Szwaczyk, S. and Jaskóła, P. (2019). Critical infrastructure risk assessment using Markov chain model, Journal of Telecommunications and Information Technology 2019(2): 15–20.
[10] Khan, F., Hashemi, S.J., Paltrinieri, N., Amyotte, P., Cozzani, V. and Reniers, G. (2016). Dynamic risk management: A contemporary approach to process safety management, Current Opinion in Chemical Engineering 14: 9–17.
[11] Kołodziej, J. and Xhafa, F. (2011). Modern approaches to modeling user requirements on resource and task allocation in hierarchical computational grids, International Journal of Applied Mathematics and Computer Science 21(2): 243–257, DOI: 10.2478/v10006-011-0018-x.
[12] König, S., Schaberreiter, T., Rass, S. and Schauer, S. (2019). A measure for resilience of critical infrastructures, in E. Luiijf et al. (Eds), Critical Information Infrastructures Security, Springer, Cham, pp. 57–71.
[13] Lian, C. and Haimes, Y.Y. (2006). Managing the risk of terrorism to interdependent infrastructure systems through the dynamic inoperability input–output model, Systems Engineering 9(3): 241–258.
[14] López, Pastor, D. and Villalba, L.J.G. (2013). Dynamic risk assessment in information systems: State-of-the-art, Proceedings of the 6th International Conference on Information Technology (ICIT 2013), Amman, Jordan, pp. 1–9.
[15] Malinowski, K. and Karbowski, A. (2019). Hierarchical on-line risk assessment at national level, International Conference on Military Communications and Information Systems (ICMCIS 2019), Budva, Montenegro, pp. 1–5.
[16] Mesarović, M., Macko, D. and Takahara, Y. (1970). Theory of Multi-Level Hierarchical Systems, Academic Press, New York, NY.
[17] Naumov, S. and Kabanov, I. (2016). Dynamic framework for assessing cyber security risks in a changing environment, Proceedings of the 2016 International Conference on Information Science and Communication Technologies (ICISCT 2016), Tashkent, Uzbekistan, pp. 1–4.
[18] NIST (2012). Guide for conducting risk assessments, information security, NIST special publication 800-30, Revision 1, Technical report, US Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD.
[19] Poolsappasit, N., Dewri, R. and Ray, I. (2012). Dynamic security risk management using Bayesian attack graphs, IEEE Transactions on Dependable and Secure Computing 9(1): 61–74.
[20] Rausand, M. (2011). Risk Assessment; Theory, Methods, and Applications, Wiley, Hoboken, NJ.
[21] Settanni, G., Skopik, F., Shovgenya, Y., Fiedler, R., Carolan, M., Conroy, D., Boettinger, K., Gall, M., Brost, G., Ponchel, C., Haustein, M., Kaufmann, H., Theuerkauf, K. and Olli, P. (2017). A collaborative cyber incident management system for European interconnected critical infrastructures, Journal of Information Security and Applications 34(2): 166–182.
[22] Skopik, F., Settanni, G. and Fiedler, R. (2016). A problem shared is a problem halved: A survey on the dimensions of collective cyber defense through security information sharing, Computers Security 60: 154–176.
[23] Szwed, P. and Skrzyński, P. (2014). A new lightweight method for security risk assessment based on fuzzy cognitive maps, International Journal of Applied Mathematics and Computer Science 24(1): 213–225, DOI: 10.2478/amcs-2014-0016.
[24] Viduto, V., Maple, C., Huang, W. and López-Peréz, D. (2012). A novel risk assessment and optimization model for a multi-objective network security countermeasure selection problem, Decision Support Systems 53(3): 569–610.
[25] Zhang, Q., Zhou, C., Xiong, N., Qin, Y., Li, X. and Huang, S. (2016). Multimodel-based incident prediction and risk assessment in dynamic cybesecurity protection for industrial control systems, IEEE Transactions on Systems, Man and Cybernetics 46(10): 1426–1444.
[26] Zwikael, O. and Smyrk, J. (2019). Project Management: A Benefit Realisation Approach, Springer, Cham.