Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2020_30_3_a12, author = {Wang, Wen and Chen, Xin and Musial, J\k{e}drzej and Blazewicz, Jacek}, title = {Two meta-heuristic algorithms for scheduling on unrelated machines with the late work criterion}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {573--584}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a12/} }
TY - JOUR AU - Wang, Wen AU - Chen, Xin AU - Musial, Jędrzej AU - Blazewicz, Jacek TI - Two meta-heuristic algorithms for scheduling on unrelated machines with the late work criterion JO - International Journal of Applied Mathematics and Computer Science PY - 2020 SP - 573 EP - 584 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a12/ LA - en ID - IJAMCS_2020_30_3_a12 ER -
%0 Journal Article %A Wang, Wen %A Chen, Xin %A Musial, Jędrzej %A Blazewicz, Jacek %T Two meta-heuristic algorithms for scheduling on unrelated machines with the late work criterion %J International Journal of Applied Mathematics and Computer Science %D 2020 %P 573-584 %V 30 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a12/ %G en %F IJAMCS_2020_30_3_a12
Wang, Wen; Chen, Xin; Musial, Jędrzej; Blazewicz, Jacek. Two meta-heuristic algorithms for scheduling on unrelated machines with the late work criterion. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 3, pp. 573-584. http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a12/
[1] Abasian, F., Ranjbar, M., Salari, M., Davari, M. and Khatami, S.M. (2014). Minimizing the total weighted late work in scheduling of identical parallel processors with communication delays, Applied Mathematical Modelling 38(15): 3975–3986.
[2] Błażewicz, J. (1984). Scheduling preemptible tasks on parallel processors with information loss, Technique et Science Informatiques 3(6): 415–420.
[3] Błażewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Sterna, M. and Weglarz, J. (2019). Handbook on Scheduling: From Theory to Practice, Springer, Cham.
[4] Błażewicz, J. and Finke, G. (1987). Minimizing mean weighted execution time loss on identical and uniform processors, Information Processing Letters 24(4): 259–263.
[5] Błażewicz, J., Kovalyov, M.Y., Musiał, J., Urbański, A.P. and Wojciechowski, A. (2010). Internet shopping optimization problem, International Journal of Applied Mathematics and Computer Science 20(2): 385–390, DOI: 10.2478/v10006-010-0028-0.
[6] Blażewicz, J., Pesch, E. and Sterna, M. (2000). The disjunctive graph machine representation of the job shop scheduling problem, European Journal of Operational Research 127(2): 317–331.
[7] Błażewicz, J., Pesch, E., Sterna,M. and Werner, F. (2004). Open shop scheduling problems with late work criteria, Discrete Applied Mathematics 134(1): 1–24.
[8] Błażewicz, J., Pesch, E., Sterna, M. and Werner, F. (2005). The two-machine flow-shop problem with weighted late work criterion and common due date, European Journal of Operational Research 165(2): 408–415.
[9] Błażewicz, J., Pesch, E., Sterna, M. and Werner, F. (2007). A note on the two machine job shop with the weighted late work criterion, Journal of Scheduling 10(2): 87–95.
[10] Blazewicz, J., Pesch, E., Sterna, M. and Werner, F. (2008). Metaheuristic approaches for the two-machine flow-shop problem with weighted late work criterion and common due date, Computers Operations Research 35(2): 574–599.
[11] Chen, R., Yuan, J., Ng, C. and Cheng, T. (2019). Single-machine scheduling with deadlines to minimize the total weighted late work, Naval Research Logistics (NRL) 66(7): 582–595.
[12] Chen, X., Chau, V., Xie, P., Sterna, M. and Błażewicz, J. (2017). Complexity of late work minimization in flow shop systems and a particle swarm optimization algorithm for learning effect, Computers Industrial Engineering 111: 176–182.
[13] Chen, X., Kovalev, S., Sterna, M. and Błażewicz, J. (2020a). Mirror scheduling problems with early work and late work criteria, Journal of Scheduling, DOI:10.1007/s10951-020-00636-9.
[14] Chen, X., Liang, Y., Sterna, M., Wang, W. and Błażewicz, J. (2020b). Fully polynomial time approximation scheme to maximize early work on parallel machines with common due date, European Journal of Operational Research 284(1): 67–74.
[15] Chen, X., Sterna, M., Han, X. and Błażewicz, J. (2016). Scheduling on parallel identical machines with late work criterion: Offline and online cases, Journal of Scheduling 19(6): 729–736.
[16] Gerstl, E., Mor, B. and Mosheiov, G. (2019). Scheduling on a proportionate flowshop to minimise total late work, International Journal of Production Research 57(2): 531–543.
[17] Glover, F. (1989). Tabu search. Part I, ORSA Journal on Computing 1(3): 190–206.
[18] Glover, F. (1990). Tabu search. Part II, ORSA Journal on Computing 2(1): 4–32.
[19] Graham, R., Lawler, E., Lenstra, J. and Kan, A.R. (1979). Optimization and approximation in deterministic sequencing and scheduling: A survey, Annals of Discrete Mathematics 5: 287–326.
[20] Hariri, A.M., Potts, C.N. and Van Wassenhove, L.N. (1995). Single machine scheduling to minimize total weighted late work, ORSA Journal on Computing 7(2): 232–242.
[21] Holland, J.H. (1962). Outline for a logical theory of adaptive systems, Journal of the ACM 9(3): 297–314.
[22] Kovalyov, M.Y., Potts, C.N. and Van Wassenhove, L.N. (1994). A fully polynomial approximation scheme for scheduling a single machine to minimize total weighted late work, Mathematics of Operations Research 19(1): 86–93.
[23] Kundakcı, N. and Kulak, O. (2016). Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problem, Computers Industrial Engineering 96: 31–51.
[24] Labib, N.S., Danoy, G., Musial, J., Brust, M.R. and Bouvry, P. (2019). Internet of unmanned aerial vehicles—A multilayer low-altitude airspace model for distributed UAV traffic management, Sensors 19(21): 4779.
[25] Leung, J.Y. (2004). Minimizing total weighted error for imprecise computation tasks and related problems, in J.Y. Leung (Ed.), Handbook of Scheduling: Algorithms, Models, and Performance Analysis, Chapman and Hall/CRC, Boca Raton, FL.
[26] Lin, B.M. and Hsu, S. (2005). Minimizing total late work on a single machine with release and due dates, SIAM Conference on Computational Science and Engineering, Orlando, FL, USA.
[27] Lin, B.M., Lin, F. and Lee, R. (2006). Two-machine flow-shop scheduling to minimize total late work, Engineering Optimization 38(04): 501–509.
[28] Lopez-Loces, M.C., Musial, J., Pecero, J.E., Fraire-Huacuja, H.J., Blazewicz, J. and Bouvry, P. (2016). Exact and heuristic approaches to solve the Internet shopping optimization problem with delivery costs, International Journal of Applied Mathematics and Computer Science 26(2): 391–406, DOI: 10.1515/amcs-2016-0028.
[29] Pesch, E. and Sterna, M. (2009). Late work minimization in flow shops by a genetic algorithm, Computers Industrial Engineering 57(4): 1202–1209.
[30] Piroozfard, H., Wong, K.Y. and Wong, W.P. (2018). Minimizing total carbon footprint and total late work criterion in flexible job shop scheduling by using an improved multi-objective genetic algorithm, Resources, Conservation and Recycling 128: 267–283.
[31] Potts, C.N. and Van Wassenhove, L.N. (1992a). Approximation algorithms for scheduling a single machine to minimize total late work, Operations Research Letters 11(5): 261–266.
[32] Potts, C.N. and Van Wassenhove, L.N. (1992b). Single machine scheduling to minimize total late work, Operations Research 40(3): 586–595.
[33] Rybarczyk, A., Hertz, A., Kasprzak, M. and Blazewicz, J. (2017). Tabu search for the RNA partial degradation problem, International Journal of Applied Mathematics and Computer Science 27(2): 401–415, DOI: 10.1515/amcs-2017-0028.
[34] Servranckx, T. and Vanhoucke, M. (2019). A tabu search procedure for the resource-constrained project scheduling problem with alternative subgraphs, European Journal of Operational Research 273(3): 841–860.
[35] Sterna, M. (2007). Metaheuristics for late work minimization in two-machine flow shop with common due date, Computers Industrial Engineering 52(2): 210–228.
[36] Sterna, M. (2011). A survey of scheduling problems with late work criteria, Omega 39(2): 120–129.
[37] Talbi, E.-G. (2009). Metaheuristics: From Design to Implementation, Wiley Sons, Hoboken, NJ.
[38] Whitley, D. (1994). A genetic algorithm tutorial, Statistics and Computing 4(2): 65–85.
[39] Wu, C.-C., Yin, Y., Wu, W.-H., Chen, H.-M. and Cheng, S.-R. (2016). Using a branch-and-bound and a genetic algorithm for a single-machine total late work scheduling problem, Soft Computing 20(4): 1329–1339.
[40] Yan, F., Dridi, M. and El Moudni, A. (2013). An autonomous vehicle sequencing problem at intersections, International Journal of Applied Mathematics and Computer Science 23(1): 183–200, DOI: 10.2478/amcs-2013-0015.