Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2020_30_3_a11, author = {Lewicki, Arkadiusz and Pancerz, Krzysztof}, title = {Ant-based clustering for flow graph mining}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {561--572}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a11/} }
TY - JOUR AU - Lewicki, Arkadiusz AU - Pancerz, Krzysztof TI - Ant-based clustering for flow graph mining JO - International Journal of Applied Mathematics and Computer Science PY - 2020 SP - 561 EP - 572 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a11/ LA - en ID - IJAMCS_2020_30_3_a11 ER -
%0 Journal Article %A Lewicki, Arkadiusz %A Pancerz, Krzysztof %T Ant-based clustering for flow graph mining %J International Journal of Applied Mathematics and Computer Science %D 2020 %P 561-572 %V 30 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a11/ %G en %F IJAMCS_2020_30_3_a11
Lewicki, Arkadiusz; Pancerz, Krzysztof. Ant-based clustering for flow graph mining. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 3, pp. 561-572. http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a11/
[1] Bazan, J.G., Buregwa-Czuma, S. and Jankowski, A.W. (2013). A domain knowledge as a tool for improving classifiers, Fundamenta Informaticae 127(1–4): 495–511.
[2] Deneubourg, J., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C. and Chrétien, L. (1991). The dynamics of collective sorting: Robot-like ants and ant-like robots, Proceedings of the 1st International Conference on Simulation of Adaptive Behaviour: From Animals to Animats 1, Paris, France, pp. 356–365.
[3] Dong, G. and Pei, J. (2007). Sequence Data Mining, Springer-Verlag, New York, NY.
[4] Duch, W., Kucharski, T., Gomuła, J. and Adamczak, R. (1999). Machine Learning Methods in Analysis of Psychometric Data: Application to Multiphasic Personality Inventory MMPI-WISKAD, CMK, Toruń, (in Polish).
[5] Ellson, J., Gansner, E.R., Koutsofios, E., North, S.C. and Woodhull, G. (2004). Graphviz and Dynagraph—Static and dynamic graph drawing tools, in M. Jünger and P. Mutzel (Eds), Graph Drawing Software, Springer, Berlin/Heidelberg, pp. 127–148.
[6] Ford, L.R. and Fulkerson, D. (2010). Flows in Networks, Princeton University Press, Princeton, NJ.
[7] Handl, J., Knowles, J. and Dorigo, M. (2006). Ant-based clustering and topographic mapping, Artificial Life 12(1): 35–62.
[8] Huang, K.-Y. and Chang, C.-H. (2008). Efficient mining of frequent episodes from complex sequences, Information Systems 33(1): 96–114.
[9] Klement, E.P., Mesiar, R. and Pap, E. (2000). Triangular Norms, Springer, Dordrecht.
[10] Kumar, P., Kumar, P., Krishna, P.R. and Raju, S.B. (2011). Pattern Discovery Using Sequence Data Mining: Applications and Studies, IGI Global, Hershey, PA.
[11] Lumer, E. and Faieta, B. (1994). Diversity and adaptation in populations of clustering ants, Proceedings of the 3rd International Conference on Simulation of Adaptive Behaviour: From Animals to Animats 3, Brighton, UK, pp. 501–508.
[12] Mannila, H., Toivonen, H. and Verkamo, A. (1997). Discovering frequent episodes in event sequences, Data Mining and Knowledge Discovery 1(3): 259–289.
[13] Marwala, T. (2013). Introduction to Economic Modeling, Springer, London.
[14] Mieszkowicz-Rolka, A. and Rolka, L. (2006). Flow graphs and decision tables with fuzzy attributes, in L. Rutkowski et al. (Eds), Artificial Intelligence and Soft Computing (ICAISC 2006), Springer, Berlin/Heidelberg, pp. 268–277.
[15] Mitsa, T. (2010). Temporal Data Mining, CRC Press, Boca Raton, FL.
[16] Nichols, D. (2011). Essentials of MMPI-2 Assessment, John Wiley, Hoboken, NJ.
[17] Pancerz, K. (2015). On selected functionality of the classification and prediction software system (CLAPSS), Proceedings of the International Conference on Information and Digital Technologies (IDT’2015), Zilina, Slovakia, pp. 278–285.
[18] Pancerz, K. (2016). Paradigmatic and syntagmatic relations in information systems over ontological graphs, Fundamenta Informaticae 148(1–2): 229–242.
[19] Pancerz, K., Lewicki, A. and Tadeusiewicz, R. (2015). Ant-based extraction of rules in simple decision systems over ontological graphs, International Journal of Applied Mathematics and Computer Science 25(2): 377–387, DOI: 10.1515/amcs-2015-0029.
[20] Pancerz, K., Lewicki, A., Tadeusiewicz, R. and Warchoł, J. (2013). Ant-based clustering in delta episode information systems based on temporal rough set flow graphs, Fundamenta Informaticae 128(1–2): 143–158.
[21] Pancerz, K., Paja, W., Sarzyński, J. and Gomuła, J. (2018). Determining importance of ranges of MMPI scales using fuzzification and relevant attribute selection, Procedia Computer Science 126: 2065–2074.
[22] Pancerz, K., Paja, W., Wrzesień, M. and Warchoł, J. (2012). Classification of voice signals through mining unique episodes in temporal information systems: A rough set approach, Proceedings of the 21st International Workshop on Concurrency, Specification and Programming (CS 2012), Vilamoura, Algarve, Portugal, pp. 280–291.
[23] Parpinelli, R.S., Lopes, H.S. and Freitas, A.A. (2002). An ant colony algorithm for classification rule discovery, in H.A. Abbass et al. (Eds), Data Mining: A Heuristic Approach, IGI Global, Hershey, PA, pp. 191–208.
[24] Pawlak, Z. (1991). Rough Sets. Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Dordrecht.
[25] Pawlak, Z. (2005). Flow graphs and data mining, in J. Peters and A. Skowron (Eds), Transactions on Rough Sets III, Springer-Verlag, Berlin/Heidelberg, pp. 1–36.
[26] Tadeusiewicz, R. (2015). Neural networks as a tool for modeling of biological systems, Bio-Algorithms and Med-Systems 11(3): 135–144.