Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2020_30_3_a10, author = {Farrera, Beltr\'an and L\'opez-Estrada, Francisco-Ronay and Chadli, Mohammed and Valencia-Palomo, Guillermo and G\'omez-Pe\~nate, Samuel}, title = {Distributed fault estimation of multi-agent systems using a proportional-integral observer: {A} leader-following application}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {551--560}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a10/} }
TY - JOUR AU - Farrera, Beltrán AU - López-Estrada, Francisco-Ronay AU - Chadli, Mohammed AU - Valencia-Palomo, Guillermo AU - Gómez-Peñate, Samuel TI - Distributed fault estimation of multi-agent systems using a proportional-integral observer: A leader-following application JO - International Journal of Applied Mathematics and Computer Science PY - 2020 SP - 551 EP - 560 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a10/ LA - en ID - IJAMCS_2020_30_3_a10 ER -
%0 Journal Article %A Farrera, Beltrán %A López-Estrada, Francisco-Ronay %A Chadli, Mohammed %A Valencia-Palomo, Guillermo %A Gómez-Peñate, Samuel %T Distributed fault estimation of multi-agent systems using a proportional-integral observer: A leader-following application %J International Journal of Applied Mathematics and Computer Science %D 2020 %P 551-560 %V 30 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a10/ %G en %F IJAMCS_2020_30_3_a10
Farrera, Beltrán; López-Estrada, Francisco-Ronay; Chadli, Mohammed; Valencia-Palomo, Guillermo; Gómez-Peñate, Samuel. Distributed fault estimation of multi-agent systems using a proportional-integral observer: A leader-following application. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 3, pp. 551-560. http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a10/
[1] Bermúdez, J.-R., López-Estrada, F.-R., Besançon, G., Valencia-Palomo, G., Torres, L. and Hernández, H.-R. (2018). Modeling and simulation of a hydraulic network for leak diagnosis, Mathematical and Computational Applications 23(4): 70.
[2] Cai, H. and Huang, J. (2014). The leader-following attitude control of multiple rigid spacecraft systems, Automatica 50(4): 1109–1115.
[3] Chadli, M., Aouaouda, S., Karimi, H.R. and Shi, P. (2013). Robust fault tolerant tracking controller design for a VTOL aircraft, Journal of the Franklin Institute 350(9): 2627–2645.
[4] Chen, G. and Song, Y.-D. (2015). Robust fault-tolerant cooperative control of multi-agent systems: A constructive design method, Journal of the Franklin Institute 352(10): 4045–4066.
[5] Das, B., Subudhi, B. and Pati, B.B. (2016). Cooperative formation control of autonomous underwater vehicles: An overview, International Journal of Automation and computing 13(3): 199–225.
[6] Estrada, F.L., Ponsart, J.C., Theilliol, D. and Astorga-Zaragoza, C.-M. (2015). Robust H−/H∞ fault detection observer design for descriptor-LPV systems with unmeasurable gain scheduling functions, International Journal of Control 88(11): 2380–2391.
[7] Hu, C., Jing, H., Wang, R., Yan, F. and Chadli, M. (2016). Robust H∞ output-feedback control for path following of autonomous ground vehicles, Mechanical Systems and Signal Processing 70: 414–427.
[8] Kuriki, Y. and Namerikawa, T. (2014). Consensus-based cooperative formation control with collision avoidance for a multi-UAV system, 2014 American Control Conference, Portland, OR, USA, pp. 2077–2082.
[9] Lewis, F.L., Zhang, H., Hengster-Movric, K. and Das, A. (2013). Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches, Springer, London.
[10] Li, J. (2015). Distributed cooperative tracking of multi-agent systems with actuator faults, Transactions of the Institute of Measurement and Control 37(9): 1041–1048.
[11] Li, S., He, J., Li, Y. and Rafique, M.U. (2016). Distributed recurrent neural networks for cooperative control of manipulators: A game-theoretic perspective, IEEE Transactions on Neural Networks and Learning Systems 28(2): 415–426.
[12] López-Estrada, F.-R., Rotondo, D. and Valencia-Palomo, G. (2019). A review of convex approaches for control, observation and safety of linear parameter varying and Takagi–Sugeno systems, Processes 7(11): 814.
[13] Ma, J., Zheng, Y. and Wang, L. (2015). LQR-based optimal topology of leader-following consensus, International Journal of Robust and Nonlinear Control 25(17): 3404–3421.
[14] Nasirian, V., Moayedi, S., Davoudi, A. and Lewis, F.L. (2014). Distributed cooperative control of DC microgrids, IEEE Transactions on Power Electronics 30(4): 2288–2303.
[15] Prodan, I., Olaru, S., Stoica, C. and Niculescu, S.-I. (2013). Predictive control for trajectory tracking and decentralized navigation of multi-agent formations, International Journal of Applied Mathematics and Computer Science 23(1): 91–102, DOI: 10.2478/amcs-2013-0008.
[16] Rotondo, D., López-Estrada, F.-R., Nejjari, F., Ponsart, J.-C., Theilliol, D. and Puig, V. (2016). Actuator multiplicative fault estimation in discrete-time LPV systems using switched observers, Journal of the Franklin Institute 353(13): 3176–3191.
[17] Shi, J., He, X., Wang, Z. and Zhou, D. (2014). Distributed fault detection for a class of second-order multi-agent systems: An optimal robust observer approach, IET Control Theory Applications 8(12): 1032–1044.
[18] Wang, J.-L. and Wu, H.-N. (2012). Leader-following formation control of multi-agent systems under fixed and switching topologies, International Journal of Control 85(6): 695–705.
[19] Wu, Y., Wang, Z., Ding, S. and Zhang, H. (2018). Leader–follower consensus of multi-agent systems in directed networks with actuator faults, Neurocomputing 275: 1177–1185.
[20] Yang, H. and Yin, S. (2018). Descriptor observers design for Markov jump systems with simultaneous sensor and actuator faults, IEEE Transactions on Automatic Control 64(8): 3370–3377.
[21] Yang, H. and Yin, S. (2019a). Actuator and sensor fault estimation for time-delay Markov jump systems with application to wheeled mobile manipulators, IEEE Transactions on Industrial Informatics 16(5): 3222–3232.
[22] Yang, H. and Yin, S. (2019b). Reduced-order sliding-mode-observer-based fault estimation for Markov jump systems, IEEE Transactions on Automatic Control 64(11): 4733–4740.
[23] Yang, P., Ma, B., Dong, Y. and Liu, J. (2018). Fault-tolerant consensus of leader-following multi-agent systems based on distributed fault estimation observer, International Journal of Control, Automation and Systems 16(5): 2354–2362.
[24] Ye, D., Chen, M. and Li, K. (2017). Observer-based distributed adaptive fault-tolerant containment control of multi-agent systems with general linear dynamics, ISA Transactions 71(1): 32–39.
[25] Zhai, G. (2015). A generalization of the graph Laplacian with application to a distributed consensus algorithm, International Journal of Applied Mathematics and Computer Science 25(2): 353–360, DOI: 10.1515/amcs-2015-0027.
[26] Zhang, H., Feng, T., Yang, G.-H. and Liang, H. (2014). Distributed cooperative optimal control for multiagent systems on directed graphs: An inverse optimal approach, IEEE Transactions on Cybernetics 45(7): 1315–1326.
[27] Zhang, K., Jiang, B. and Cocquempot, V. (2015). Adaptive technique-based distributed fault estimation observer design for multi-agent systems with directed graphs, IET Control Theory Applications 9(18): 2619–2625.
[28] Zhao, M., Peng, C., He, W. and Song, Y. (2017). Event-triggered communication for leader-following consensus of second-order multiagent systems, IEEE Transactions on Cybernetics 48(6): 1888–1897.
[29] Zhou, B., Wang, W. and Ye, H. (2014). Cooperative control for consensus of multi-agent systems with actuator faults, Computers Electrical Engineering 40(7): 2154–2166.