Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2020_30_3_a1, author = {Franchini, Silvia and Gentile, Antonio and Vassallo, Giorgio and Vitabile, Salvatore}, title = {Implementation and evaluation of medical imaging techniques based on conformal geometric algebra}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {415--433}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a1/} }
TY - JOUR AU - Franchini, Silvia AU - Gentile, Antonio AU - Vassallo, Giorgio AU - Vitabile, Salvatore TI - Implementation and evaluation of medical imaging techniques based on conformal geometric algebra JO - International Journal of Applied Mathematics and Computer Science PY - 2020 SP - 415 EP - 433 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a1/ LA - en ID - IJAMCS_2020_30_3_a1 ER -
%0 Journal Article %A Franchini, Silvia %A Gentile, Antonio %A Vassallo, Giorgio %A Vitabile, Salvatore %T Implementation and evaluation of medical imaging techniques based on conformal geometric algebra %J International Journal of Applied Mathematics and Computer Science %D 2020 %P 415-433 %V 30 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a1/ %G en %F IJAMCS_2020_30_3_a1
Franchini, Silvia; Gentile, Antonio; Vassallo, Giorgio; Vitabile, Salvatore. Implementation and evaluation of medical imaging techniques based on conformal geometric algebra. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 3, pp. 415-433. http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a1/
[1] Ashdown, M. (2018). GA package for Maple, http://www.mrao.cam.ac.uk/~maja1/software/GA/.
[2] Batard, T., Berthier, M. and Saint-Jean, C. (2010). Clifford Fourier transform for color image processing, in E.J. Bayro-Corrochano and G. Scheuermann (Eds), Geometric Algebra Computing in Engineering and Computer Science, Springer, Berlin, pp. 135–161.
[3] Bayro-Corrochano, E. and Rivera-Rovelo, J. (2009). The use of geometric algebra for 3D modeling and registration of medical data, Journal of Mathematical Imaging and Vision 34(1): 48–60.
[4] Besl, P.J. and McKay, N.D. (1992). A method for registration of 3D shapes, IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2): 239–256.
[5] Clifford, W.K. (1882). On the classification of geometric algebras, in R. Tucker (Ed.), Mathematical Papers, Macmillian, London, pp. 397–401.
[6] Dorst, L., Fontijne, D. and Mann, S. (2007). Geometric Algebra for Computer Science: An Object Oriented Approach to Geometry, Morgan Kaufmann, Burlington, MA.
[7] Ebling, J. and Scheuermann, G. (2005). Clifford Fourier transform on vector fields, IEEE Transactions on Visualization and Computer Graphics 11(4): 469–479.
[8] Fabijańska, A.,Węgliński, T., Zakrzewski, K. and Nowosławska, E. (2014). Assessment of hydrocephalus in children based on digital image processing and analysis, International Journal of Applied Mathematics and Computer Science 24(2): 299–312, DOI: 10.2478/amcs-2014-0022.
[9] Fontijne, D. (2006). Gaigen 2: A geometric algebra implementation generator, Proceedings of the 5th International Conference on Generative Programming and Component Engineering, GPCE 2006, Portland, OR, USA, pp. 141–150.
[10] Franchini, S., Gentile, A., Sorbello, F., Vassallo, G. and Vitabile, S. (2008). An FPGA implementation of a quadruple-based multiplier for 4D Clifford algebra, Proceedings of the 11th IEEE Euromicro Conference on Digital System Design—Architectures, Methods and Tools (DSD 2008), Parma, Italy, pp. 743–751.
[11] Franchini, S., Gentile, A., Sorbello, F., Vassallo, G. and Vitabile, S. (2011). Fixed-size quadruples for a new, hardware-oriented representation of the 4D Clifford algebra, Advances in Applied Clifford Algebras 21(2): 315–340.
[12] Franchini, S., Gentile, A., Sorbello, F., Vassallo, G. and Vitabile, S. (2012). Design space exploration of parallel embedded architectures for native Clifford algebra operations, IEEE Design and Test of Computers 29(3): 60–69.
[13] Franchini, S., Gentile, A., Sorbello, F., Vassallo, G. and Vitabile, S. (2013). Design and implementation of an embedded coprocessor with native support for 5D, quadruple-based Clifford algebra, IEEE Transactions on Computers 62(12): 2366–2381.
[14] Franchini, S., Gentile, A., Sorbello, F., Vassallo, G. and Vitabile, S. (2015). ConformalALU: A conformal geometric algebra coprocessor for medical image processing, IEEE Transactions on Computers 64(4): 955–970.
[15] Gentile, A., Segreto, S., Sorbello, F., Vassallo, G., Vitabile, S. and Vullo, V. (2005). CliffoSor: A parallel embedded architecture for geometric algebra and computer graphics, Proceedings of the IEEE International Workshop on Computer Architecture for Machine Perception (CAMP 2005), Palermo, Italy, pp. 90–95.
[16] Hestenes, D. (1986). New Foundations for Classical Mechanics, Kluwer Academic, Dordrecht.
[17] Hestenes, D. and Sobczyk, G. (1987). Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics, Kluwer Academic, Dordrecht.
[18] Hildenbrand, D. (2018). Introduction to Geometric Algebra Computing, Chapman and Hall/CRC, Boca Raton, FL.
[19] Hitzer, E. and Sangwine, S. (2018). Clifford Multivector Toolbox, A toolbox for computing with Clifford algebras in Matlab, https://sourceforge.net/projects/clifford-multivector-toolbox/.
[20] Hrebień, M., Steć, P., Nieczkowski, T. and Obuchowicz, A. (2008). Segmentation of breast cancer fine needle biopsy cytological images, International Journal of Applied Mathematics and Computer Science 18(2): 159–170, DOI: 10.2478/v10006-008-0015-x.
[21] Lasenby, J., Lasenby, A.N., Doran, C.J.L., and Fitzgerald, W.J. (1998). New geometric methods for computer vision: An application to structure and motion estimation, International Journal of Computer Vision 26(3): 191–213.
[22] Menneson, J., Saint-Jean, C. and Mascarilla, L. (2011). Color object recognition based on a Clifford Fourier transform, in L. Dorst and J. Lasenby (Eds), Guide to Geometric Algebra in Practice, Springer, Berlin, pp. 175-191.
[23] Mishra, B., Wilson, P. and Wilcock, R. (2015). A geometric algebra coprocessor for color edge detection, Electronics 4(1): 94–117.
[24] Newman, T.S. and Yi, H. (2006). A survey of the marching cubes algorithm, Computers Graphics 30(5): 854–879.
[25] Ranjan, V. and Fournier, A. (1995). Union of Spheres (UoS) model for volumetric data, Proceedings of the 11th Annual Symposium on Computational Geometry, Vancouver, BC, Canada, pp. 402–403.
[26] Rivera-Rovelo, J. and Bayro-Corrochano, E. (2006). Medical image segmentation using a self-organizing neural network and Clifford geometric algebra, International Joint Conference on Neural Networks, IJCNN 2006, Vancovver, BC, Canada, pp. 3538–3545.
[27] Rivera-Rovelo, J. and Bayro-Corrochano, E. (2007). Surface approximation using growing self-organizing nets and gradient information, Applied Bionics and Biomechanics 4(3): 125–136.
[28] Sommer, G. (2001). Geometric Computing with Clifford Algebras: Theoretical Foundations and Applications in Computer Vision and Robotics, Springer, Berlin.
[29] Stefanowski, J., Krawiec, K. and Wrembel, R. (2017). Exploring complex and big data, International Journal of Applied Mathematics and Computer Science 27(4): 669–679, DOI: 10.1515/amcs-2017-0046.
[30] Zhang, Z. (1994). Iterative point matching for registration of free-form curves, International Journal of Computer Vision 13(2): 119–152.