Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2020_30_3_a0, author = {Wang, Yong and Zhang, Dongfang and Dai, Guangming}, title = {Classification of high resolution satellite images using improved {U-Net}}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {399--413}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a0/} }
TY - JOUR AU - Wang, Yong AU - Zhang, Dongfang AU - Dai, Guangming TI - Classification of high resolution satellite images using improved U-Net JO - International Journal of Applied Mathematics and Computer Science PY - 2020 SP - 399 EP - 413 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a0/ LA - en ID - IJAMCS_2020_30_3_a0 ER -
%0 Journal Article %A Wang, Yong %A Zhang, Dongfang %A Dai, Guangming %T Classification of high resolution satellite images using improved U-Net %J International Journal of Applied Mathematics and Computer Science %D 2020 %P 399-413 %V 30 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a0/ %G en %F IJAMCS_2020_30_3_a0
Wang, Yong; Zhang, Dongfang; Dai, Guangming. Classification of high resolution satellite images using improved U-Net. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 3, pp. 399-413. http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_3_a0/
[1] Badrinarayanan, V., Kendall, A. and Cipolla, R. (2017). Segnet: A deep convolutional encoder-decoder architecture for image segmentation, IEEE Transactions on Geoscience Remote Sensing 39(12): 2481–2495.
[2] Bei, Z., Bo, H. and Zhong, Y. (2017). Transfer learning with fully pretrained deep convolution networks for land-use classification, IEEE Geoscience Remote Sensing Letters PP(99): 1–5.
[3] Caesar, H., Uijlings, J. and Ferrari, V. (2018). Coco-stuff: Thing and stuff classes in context, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, pp. 1209–1218.
[4] Carreira, J., Rui, C., Batista, J. and Sminchisescu, C. (2012). Semantic segmentation with second-order pooling, European Conference on Computer Vision, Firenze, Italy, pp. 430–443.
[5] Carreira, J. and Sminchisescu, C. (2011). CPMC: Automatic object segmentation using constrained parametric min-cuts, IEEE Transactions on Pattern Analysis and Machine Intelligence 34(7): 1312–1328.
[6] Castelluccio, M., Poggi, G., Sansone, C. and Verdoliva, L. (2015). Land use classification in remote sensing images by convolutional neural networks, Acta Ecologica Sinica 28(2): 627–635.
[7] Chandra, S. and Kokkinos, I. (2016). Fast, exact and multi-scale inference for semantic image segmentation with deep Gaussian CRFS, European Conference on Computer Vision, Amsterdam, The Netherlands, pp. 402–418.
[8] Chandra, S., Usunier, N. and Kokkinos, I. (2017). Dense and low-rank Gaussian CRFs using deep embeddings, IEEE International Conference on Computer Vision, Honolulu, HI, USA, pp. 5103–5112.
[9] Chao, P., Zhang, X., Gang, Y., Luo, G. and Jian, S. (2017). Large kernel matters—Improve semantic segmentation by global convolutional network, IEEE Conference on Computer Vision and Pattern Recognition, Venice, Italy, pp. 4353–4361.
[10] Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K. and Yuille, A.L. (2017a). DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs, IEEE Transactions on Pattern Analysis Machine Intelligence 40(4): 834–848.
[11] Chen, L.-C., Papandreou, G., Schroff, F. and Adam, H. (2017b). Rethinking atrous convolution for semantic image segmentation, arXiv 1706.05587.
[12] Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F. and Adam, H. (2018). Encoder-decoder with atrous separable convolution for semantic image segmentation, Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, pp. 801–818.
[13] Cleve, C., Kelly, M., Kearns, F.R. and Moritz, M. (2008). Classification of the wildland–urban interface: A comparison of pixel- and object-based classifications using high-resolution aerial photography, Computers Environment Urban Systems 32(4): 317–326.
[14] Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S. and Schiele, B. (2016). The cityscapes dataset for semantic urban scene understanding, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, pp. 3213–3223.
[15] Fu, J., Jing, L., Wang, Y. and Lu, H. (2019). Stacked deconvolutional network for semantic segmentation, IEEE Transactions on Image Processing PP(99): 1–1.
[16] Fulkerson, B., Vedaldi, A. and Soatto, S. (2009). Class segmentation and object localization with superpixel neighborhoods, IEEE International Conference on Computer Vision, Kyoto, Japan, pp. 670–677.
[17] Gang, C., Weng, Q., Hay, G.J. and He, Y. (2018). Geographic object-based image analysis (geobia): Emerging trends and future opportunities, GIScience Remote Sensing 55(2): 159–182.
[18] Gibbons, J. and Chakraborti, S. (2011). The Wilcoxon rank-sum test and confidence interval, Nonparametric Statistical Inference 59(4): 290–293.
[19] Gong, C., Han, J., Lei, G., Liu, Z., Bu, S. and Ren, J. (2015). Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images, IEEE Transactions on Geoscience Remote Sensing 53(8): 4238–4249.
[20] Grauman, K. and Darrell, T. (2005). Pyramid match kernels: Discriminative classification with sets of image features, 10th IEEE International Conference on Computer Vision, Beijing, China, pp. 1458–1465.
[21] He, K., Zhang, X., Ren, S. and Sun, J. (2015). Spatial pyramid pooling in deep convolutional networks for visual recognition, IEEE Transactions on Pattern Analysis Machine Intelligence 37(9): 1904–16.
[22] Kim, J.H., Lee, H., Hong, S.J., Kim, S., Park, J., Hwang, J.Y. and Choi, J.P. (2018). Objects segmentation from high-resolution aerial images using U-Net with pyramid pooling layers, IEEE Geoscience and Remote Sensing Letters 16(1): 115-119.
[23] Lazebnik, S., Schmid, C. and Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, NY, USA, pp. 2169–2178.
[24] Lin, G., Milan, A., Shen, C. and Reid, I. (2017). Refinenet: Multi-path refinement networks with identity mappings for high-resolution semantic segmentation, IEEE International Conference on Computer Vision, Venice, Italy, pp. 1925–1934.
[25] Liu,W., Rabinovich, A. and Berg, A. (2015). Parsenet: Looking wider to see better, arXiv 1506.04579.
[26] Long, J., Shelhamer, E. and Darrell, T. (2015). Fully convolutional networks for semantic segmentation, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, pp. 3431–3440.
[27] Maggiori, E., Tarabalka, Y., Charpiat, G. and Alliez, P. (2016). Convolutional neural networks for large-scale remote sensing image classification, IEEE Transactions on Geoscience Remote Sensing 55(2): 645–657.
[28] Marcos, D., Volpi, M., Kellenberger, B. and Tuia, D. (2018). Land cover mapping at very high resolution with rotation equivariant CNNs: Towards small yet accurate models, ISPRS Journal of Photogrammetry and Remote Sensing 145(5): 96–107.
[29] Marmanis, D., Schindler, K., Wegner, J., Galliani, S., Datcu, M. and Stilla, U. (2016). Classification with an edge: Improving semantic image segmentation with boundary detection, ISPRS Journal of Photogrammetry and Remote Sensing 135(7): 158–172.
[30] Mi, Z. and Hu, X. (2017). Learning dual multi-scale manifold ranking for semantic segmentation of high-resolution images, Remote Sensing 9(5): 500.
[31] Miao, L., Zang, S., Bing, Z., Li, S. and Wu, C. (2014). A review of remote sensing image classification techniques: The role of spatio-contextual information, European Journal of Remote Sensing 47(1): 389–411.
[32] Noh, H., Hong, S. and Han, B. (2015). Learning deconvolution network for semantic segmentation, IEEE International Conference on Computer Vision, Santiago, Chile, pp. 1520–1528.
[33] Peng, D., Zhang, Y. and Guan, H. (2019). End-to-end change detection for high resolution satellite images using improved UNet++, Remote Sensing 11(11): 1382.
[34] Pohlen, T., Hermans, A., Mathias, M. and Leibe, B. (2017). Full-resolution residual networks for semantic segmentation in street scenes, IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, pp. 4151–4160.
[35] Razavian, A.S., Azizpour, H., Sullivan, J. and Carlsson, S. (2014). CNN features off-the-shelf: An astounding baseline for recognition, IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, pp. 806–813.
[36] Ren, S., Girshick, R., Girshick, R. and Sun, J. (2017). Faster r-CNN: Towards real-time object detection with region proposal networks, IEEE Transactions on Pattern Analysis Machine Intelligence 39(6): 1137–1149.
[37] Ronneberger, O., Fischer, P. and Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation, International Conference on Medical Image Computing Computer-Assisted Intervention, Munich, Germany, pp. 234–241.
[38] Scott, G.J., England, M.R., Starms, W.A., Marcum, R.A. and Davis, C.H. (2017). Training deep convolutional neural networks for land-cover classification of high-resolution imagery, IEEE Geoscience Remote Sensing Letters 14(9): 1638–1642.
[39] Sharma, A., Liu, X., Yang, X. and Shi, D. (2017). A patch-based convolutional neural network for remote sensing image classification, Neural Networks 95(7): 19.
[40] Shotton, J., Johnson, M. and Cipolla, R. (2008). Semantic texton forests for image categorization and segmentation, Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, pp. 1–8.
[41] Shotton, J., Winn, J., Rother, C. and Criminisi, A. (2009). Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context, International Journal of Computer Vision 81(1): 2–23.
[42] Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition, arXiv 1409.1556.
[43] Sivic and Zisserman (2003). Video Google: A text retrieval approach to object matching in videos, Proceedings of the 9th IEEE International Conference on Computer Vision, Nice, France, Vol.2, pp. 1470–1477.
[44] Tao, L., Abd-Elrahman, A., Morton, J. and Wilhelm, V.L. (2018). Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system, GIScience Remote Sensing 55(2): 243–264.
[45] Vemulapalli, R., Tuzel, O., Liu, M.Y. and Chellappa, R. (2016). Gaussian conditional random field network for semantic segmentation, Computer Vision Pattern Recognition, Las Vegas, NV, USA, pp. 3224–3233.
[46] Volpi, M. and Tuia, D. (2017). Dense semantic labeling of subdecimeter resolution images with convolutional neural networks, IEEE Transactions on Geoscience and Remote Sensing 55(2): 881–893.
[47] Yang, H., Yu, B., Luo, J. and Chen, F. (2019). Semantic segmentation of high spatial resolution images with deep neural networks, GIScience Remote Sensing 56(5): 1–20.
[48] Zhang, C., Xin, P., Li, H., Gardiner, A. and Atkinson, P.M. (2018a). A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification, ISPRS Journal of Photogrammetry Remote Sensing 140(7): 133–144.
[49] Zhang, P., Ke, Y., Zhang, Z., Wang, M., Li, P. and Zhang, S. (2018b). Urban land use and land cover classification using novel deep learning models based on high spatial resolution satellite imagery, IEEE Transactions on Geoscience Remote Sensing 18(11): 3717.
[50] Zhao, H., Shi, J., Qi, X., Wang, X. and Jia, J. (2017). Pyramid scene parsing network, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp. 6230–6239.
[51] Zhao, W. and Du, S. (2016). Learning multiscale and deep representations for classifying remotely sensed imagery, ISPRS Journal of Photogrammetry Remote Sensing 113(3): 155–165.
[52] Zhou, B., Hang, Z., Puig, X., Fidler, S., Barriuso, A. and Torralba, A. (2017). Scene parsing through ADE20K dataset, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, pp. 633–641.
[53] Zhuowen, T. and Xiang, B. (2010). Auto-context and its application to high-level vision tasks and 3D brain image segmentation, IEEE Transactions on Pattern Analysis Machine Intelligence 32(10): 1744–1757.