Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2020_30_2_a7, author = {Madrid, Nicol\'as and Medina, Jes\'us and Ram{\'\i}rez-Poussa, Elo{\'\i}sa}, title = {Rough sets based on {Galois} connections}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {299--313}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_2_a7/} }
TY - JOUR AU - Madrid, Nicolás AU - Medina, Jesús AU - Ramírez-Poussa, Eloísa TI - Rough sets based on Galois connections JO - International Journal of Applied Mathematics and Computer Science PY - 2020 SP - 299 EP - 313 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_2_a7/ LA - en ID - IJAMCS_2020_30_2_a7 ER -
%0 Journal Article %A Madrid, Nicolás %A Medina, Jesús %A Ramírez-Poussa, Eloísa %T Rough sets based on Galois connections %J International Journal of Applied Mathematics and Computer Science %D 2020 %P 299-313 %V 30 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_2_a7/ %G en %F IJAMCS_2020_30_2_a7
Madrid, Nicolás; Medina, Jesús; Ramírez-Poussa, Eloísa. Rough sets based on Galois connections. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 2, pp. 299-313. http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_2_a7/
[1] Alcalde, C., Burusco, A., Díaz-Moreno, J.C. and Medina, J. (2017). Fuzzy concept lattices and fuzzy relation equations in the retrieval processing of images and signals, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 25(Supplement-1): 99–120.
[2] Benítez-Caballero, M.J., Medina, J., Ramírez-Poussa, E. and Ślęzak, D. (2020). A computational procedure for variable selection preserving different initial conditions, International Journal of Computer Mathematics 97(1–2): 387–404.
[3] Birkhoff, G. (1967). Lattice Theory, 3rd Edn, American Mathematical Society, Providence, RI.
[4] Bloch, I. (2000). On links between mathematical morphology and rough sets, Pattern Recognition 33(9): 1487–1496.
[5] Bustince, H., Madrid, N. and Ojeda-Aciego, M. (2015). The notion of weak-contradiction: Definition and measures, IEEE Transactions on Fuzzy Systems 23(4): 1057–1069.
[6] Cornejo, M.E., Díaz-Moreno, J.C. and Medina, J. (2017a). Multi-adjoint relation equations: A decision support system for fuzzy logic, International Journal of Intelligent Systems 32(8): 778–800.
[7] Cornejo, M.E., Lobo, D. and Medina, J. (2018a). Syntax and semantics of multi-adjoint normal logic programming, Fuzzy Sets and Systems 345: 41–62, DOI: 10.1016/j.fss.2017.12.009.
[8] Cornejo, M.E., Medina, J. and Ramírez-Poussa, E. (2017b). Attribute and size reduction mechanisms in multi-adjoint concept lattices, Journal of Computational and Applied Mathematics 318: 388–402.
[9] Cornejo, M.E., Medina, J. and Ramírez-Poussa, E. (2018b). Characterizing reducts in multi-adjoint concept lattices, Information Sciences 422: 364–376.
[10] Cornelis, C., Medina, J. and Verbiest, N. (2014). Multi-adjoint fuzzy rough sets: Definition, properties and attribute selection, International Journal of Approximate Reasoning 55(1): 412–426.
[11] Couso, I. and Dubois, D. (2011). Rough sets, coverings and incomplete information, Fundamenta Informaticae 108(3–4): 223–247.
[12] Davey, B. and Priestley, H. (2002). Introduction to Lattices and Order, 2nd Edn, Cambridge University Press, Cambridge.
[13] Denecke, K., Erné, M. and Wismath, S.L. (Eds) (2004). Galois Connections and Applications, Kluwer Academic Publishers, Dordrecht.
[14] Di Nola, A., Sanchez, E., Pedrycz, W. and Sessa, S. (1989). Fuzzy Relation Equations and Their Applications to Knowledge Engineering, Kluwer Academic Publishers, Norwell, MA.
[15] Díaz-Moreno, J.C. and Medina, J. (2013). Multi-adjoint relation equations: Definition, properties and solutions using concept lattices, Information Sciences 253: 100–109.
[16] Díaz-Moreno, J.C., Medina, J. and Turunen, E. (2017). Minimal solutions of general fuzzy relation equations on linear carriers. An algebraic characterization, Fuzzy Sets and Systems 311: 112–123.
[17] Ganter, B. and Wille, R. (1999). Formal Concept Analysis: Mathematical Foundation, Springer Verlag, Berlin.
[18] Grant, J. and Hunter, A. (2006). Measuring inconsistency in knowledge bases, Journal of Intelligent Information Systems 27(2): 159–184.
[19] Hajek, P. (1998). Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht.
[20] Han, S.-E. (2019). Roughness measures of locally finite covering rough sets, International Journal of Approximate Reasoning 105: 368–385.
[21] Hassanien, A.E., Abraham, A., Peters, J.F., Schaefer, G. and Henry, C. (2009). Rough sets and near sets in medical imaging: A review, IEEE Transactions on Information Technology in Biomedicine 13(6): 955–968.
[22] Hassanien, A.E., Schaefer, G. and Darwish, A. (2010). Computational intelligence in speech and audio processing: Recent advances, in X.-Z. Gao et al. (Eds), Soft Computing in Industrial Applications, Springer, Berlin/Heidelberg, pp. 303–311.
[23] Järvinen, J., Radeleczki, S. and Veres, L. (2009). Rough sets determined by quasiorders, Order 26(4): 337–355.
[24] Kortelainen, J. (1994). On relationship between modified sets, topological spaces and rough sets, Fuzzy Sets and Systems 61(1): 91–95.
[25] Luo, C., Li, T., Chen, H., Fujita, H. and Yi, Z. (2018). Incremental rough set approach for hierarchical multicriteria classification, Information Sciences 429: 72–87.
[26] Madrid, N. (2017). An extension of f-transforms to more general data: Potential applications, Soft Computing 21(13): 3551–3565.
[27] Madrid, N. and Ojeda-Aciego, M. (2011a). Measuring inconsistency in fuzzy answer set semantics, IEEE Transactions on Fuzzy Systems 19(4): 605–622.
[28] Madrid, N. and Ojeda-Aciego, M. (2011b). On the existence and unicity of stable models in normal residuated logic programs, International Journal of Computer Mathematics 89(3): 310–324.
[29] Madrid, N. and Ojeda-Aciego, M. (2017). A view of f-indexes of inclusion under different axiomatic definitions of fuzzy inclusion, in S. Moral et al. (Eds), Scalable Uncertainty Management, Springer, Cham, pp. 307–318.
[30] Madrid, N., Ojeda-Aciego, M., Medina, J. and Perfilieva, I. (2019). L-fuzzy relational mathematical morphology based on adjoint triples, Information Sciences 474: 75–89.
[31] Medina, J. (2012a). Multi-adjoint property-oriented and object-oriented concept lattices, Information Sciences 190: 95–106.
[32] Medina, J. (2012b). Relating attribute reduction in formal, object-oriented and property-oriented concept lattices, Computers Mathematics with Applications 64(6): 1992–2002.
[33] Medina, J. (2017). Minimal solutions of generalized fuzzy relational equations: Clarifications and corrections towards a more flexible setting, International Journal of Approximate Reasoning 84: 33–38.
[34] Medina, J., Ojeda-Aciego, M. and Ruiz-Calviño, J. (2009). Formal concept analysis via multi-adjoint concept lattices, Fuzzy Sets and Systems 160(2): 130–144.
[35] Medina, J., Ojeda-Aciego, M. and Vojtáš, P. (2004). Similarity-based unification: A multi-adjoint approach, Fuzzy Sets and Systems 146(1): 43–62.
[36] Novák, V., Mockor, J. and Perfilieva, I. (1999). Mathematical Principles of Fuzzy Logic, Kluwer, Boston, MA.
[37] Pagliani, P. (2014). The relational construction of conceptual patterns—Tools, implementation and theory, in M. Kryszkiewicz et al. (Eds), Rough Sets and Intelligent Systems Paradigms, Springer International Publishing, Cham, pp. 14–27.
[38] Pagliani, P. (2016). Covering Rough Sets and Formal Topology—A Uniform Approach Through Intensional and Extensional Constructors, Springer, Berlin/Heidelberg, pp. 109–145.
[39] Pagliani, P. and Chakraborty, M. (2008). A Geometry of Approximation: Rough Set Theory Logic, Algebra and Topology of Conceptual Patterns (Trends in Logic), 1st Edn, Springer Publishing Company, Berlin/Heidelberg.
[40] Pawlak, Z. (1982). Rough sets, International Journal of Computer and Information Science 11: 341–356.
[41] Pawlak, Z. (1991). Rough Sets—Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Dordrecht.
[42] Perfilieva, I. (2006). Fuzzy transforms: Theory and applications, Fuzzy Sets and Systems 157(8): 993–1023.
[43] Perfilieva, I., Singh, A.P. and Tiwari, S.P. (2017). On the relationship among f-transform, fuzzy rough set and fuzzy topology, Soft Computing 21(13): 3513–3523.
[44] Ronse, C. and Heijmans, H.J.A.M. (1991). The algebraic basis of mathematical morphology. II: Openings and closings, CVGIP: Image Understanding 54(1): 74–97.
[45] Sanchez, E. (1976). Resolution of composite fuzzy relation equations, Information and Control 30(1): 38–48.
[46] Shao, M.-W., Liu, M. and Zhang, W.-X. (2007). Set approximations in fuzzy formal concept analysis, Fuzzy Sets and Systems 158(23): 2627–2640.
[47] Skowron, A., Swiniarski, R. and Synak, P. (2004). Approximation spaces and information granulation, in S. Tsumoto et al. (Eds), Rough Sets and Current Trends in Computing, Springer, Berlin/Heidelberg, pp. 116–126.
[48] Slowinski, R. and Vanderpooten, D. (1997). Similarity relation as a basis for rough approximations, in P.P. Wang (Ed.), Advances in Machine Intelligence and Soft Computing, Duke University, Durham, NC, pp. 17–33.
[49] Stell, J.G. (2007). Relations in mathematical morphology with applications to graphs and rough sets, in S. Winter et al. (Eds), Spatial Information Theory, Springer, Berlin, Heidelberg, pp. 438–454.
[50] Tan, A., Wu, W.-Z. and Tao, Y. (2018). A unified framework for characterizing rough sets with evidence theory in various approximation spaces, Information Sciences 454–455: 144–160.
[51] Varma, P.R.K., Kumari, V.V. and Kumar, S.S. (2015). A novel rough set attribute reduction based on ant colony optimisation, International Journal of Intelligent Systems Technologies and Applications 14(3–4): 330–353.
[52] Wille, R. (1982). Restructuring lattice theory: An approach based on hierarchies of concepts, in I. Rival (Ed.), Ordered Sets, Reidel, Dordrecht, pp. 445–470.
[53] Wille, R. (2005). Formal concept analysis as mathematical theory of concepts and concept hierarchies, in B. Ganter et al. (Eds), Formal Concept Analysis, Lecture Notes in Computer Science, Vol. 3626, Springer, Berlin/Heidelberg, pp. 1–33.
[54] Zakowski, W. (1983). Approximations in the space (u, π), Demonstratio Mathematica 16(3): 761–769.
[55] Yang, X., Li, T., Fujita, H., Liu, D. and Yao, Y. (2017). A unified model of sequential three-way decisions and multilevel incremental processing, Knowledge-Based Systems 134: 172–188.
[56] Yao, Y. (1998a). A comparative study of fuzzy sets and rough sets, Information Sciences 109(1): 227–242.
[57] Yao, Y. (1998b). Relational interpretations of neighborhood operators and rough set approximation operators, Information Sciences 111(1): 239–259.
[58] Yao, Y. (2018). Three-way decision and granular computing, International Journal of Approximate Reasoning 103: 107–123.
[59] Yao, Y. and Chen, Y. (2006). Rough set approximations in formal concept analysis, in J.F. Peters and A. Skowron (Eds), Transactions on Rough Sets V, Springer, Berlin/Heidelberg, pp. 285–305.
[60] Yao, Y. and Lingras, P. (1998). Interpretations of belief functions in the theory of rough sets, Information Sciences 104(1): 81–106.
[61] Yao, Y.Y. (1996). Two views of the theory of rough sets in finite universes, International Journal of Approximate Reasoning 15(4): 291–317.
[62] Yao, Y.Y. (2004). A comparative study of formal concept analysis and rough set theory in data analysis, in S. Tsumoto et al. (Eds), Rough Sets and Current Trends in Computing, Springer, Berlin/Heidelberg, pp. 59–68.
[63] Yao, Y. and Yao, B. (2012). Covering based rough set approximations, Information Sciences 200: 91–107.
[64] Zhang, Q., Xie, Q. and Wang, G. (2016). A survey on rough set theory and its applications, CAAI Transactions on Intelligence Technology 1(4): 323–333.
[65] Zhu, W. (2007). Generalized rough sets based on relations, Information Sciences 177(22): 4997–5011.
[66] Ziarko,W. (2008). Probabilistic approach to rough sets, International Journal of Approximate Reasoning 49(2): 272–284.