Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2020_30_2_a11, author = {Chen, Lei and Zielinska, Teresa and Wang, Jikun and Ge, Weimin}, title = {Solution of an inverse kinematics problem using dual quaternions}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {351--361}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_2_a11/} }
TY - JOUR AU - Chen, Lei AU - Zielinska, Teresa AU - Wang, Jikun AU - Ge, Weimin TI - Solution of an inverse kinematics problem using dual quaternions JO - International Journal of Applied Mathematics and Computer Science PY - 2020 SP - 351 EP - 361 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_2_a11/ LA - en ID - IJAMCS_2020_30_2_a11 ER -
%0 Journal Article %A Chen, Lei %A Zielinska, Teresa %A Wang, Jikun %A Ge, Weimin %T Solution of an inverse kinematics problem using dual quaternions %J International Journal of Applied Mathematics and Computer Science %D 2020 %P 351-361 %V 30 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_2_a11/ %G en %F IJAMCS_2020_30_2_a11
Chen, Lei; Zielinska, Teresa; Wang, Jikun; Ge, Weimin. Solution of an inverse kinematics problem using dual quaternions. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 2, pp. 351-361. http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_2_a11/
[1] An, H.S., Lee, J.H., Lee, C., Seo, T. and Lee, J.W. (2017). Geometrical kinematic solution of serial spatial manipulators using screw theory, Mechanism and Machine Theory 116: 404–418.
[2] An, H.S., Seo, T.W. and Lee, J.W. (2018). Generalized solution for a sub-problem of inverse kinematics based on product of exponential formula, Journal of Mechanical Science and Technology 32(5): 2299–2307.
[3] Cariow, A., Cariowa, G. and Witczak, M. (2015). An FPGA-oriented fully parallel algorithm for multiplying dual quaternions, Measurement Automation Monitoring 61(7): 370–372.
[4] Chang, C., Liu, J., Ni, Z. and Qi, R. (2018). An improved kinematic calibration method for serial manipulators based on POE formula, Robotica 36(8): 1244–1262.
[5] Chen, Q., Zhu, S. and Zhang, X. (2015). Improved inverse kinematics algorithm using screw theory for a six-DOF robot manipulator, International Journal of Advanced Robotic Systems 12(10): 1–9.
[6] Clifford, W.K. (1882). Mathematical Papers, Macmillan and Company, London.
[7] Craig, J.J. (2009). Introduction to Robotics: Mechanics and Control, 3/E, Pearson Education India, Delhi.
[8] Ge, W., Chen, L., Wang, X., Xing, E. and Zielinska, T. (2019). Kinematics modeling and analysis of manipulator using the dual quaternion, 2019 IEEE International Conference on Mechatronics and Automation (ICMA), Tianjin, China, pp. 750–755, DOI: 10.1109/ICMA.2019.8816603.
[9] Ge, W., Yu, X. and Xing, E. (2018). Kinematics modeling and analysis of manipulator based on dual quaternion, Journal of Mechanical Transmission 42(07): 112–117, DOI: 10.16578/j.issn.1004.2539.2018.07.023.
[10] Gouasmi, M., Ouali, M. and Brahim, F. (2012). Robot kinematics using dual quaternions, IAES International Journal of Robotics and Automation 1(1): 13–30.
[11] Gui, H. and Vukovich, G. (2016). Dual-quaternion-based adaptive motion tracking of spacecraft with reduced control effort, Nonlinear Dynamics 83(1–2): 597–614.
[12] Kenwrigth, B. (2013). Inverse kinematics with dual-quaternions, exponential-maps, and joint limits, International Journal on Advances in Intelligent Systems 6(1): 53–65.
[13] Kussaba, H.T.M., Figueredo, L.F.C., Ishihara, J.Y. and Adorno, B.V. (2017). Hybrid kinematic control for rigid body pose stabilization using dual quaternions, Journal of the Franklin Institute: Engineering and Applied Mathematics 354(7): 2769–2787.
[14] Mueller, A. (2017). Coordinate mappings for rigid body motions, Journal of Computational and Nonlinear Dynamics 12(2): 1–13.
[15] Mukundan, R. (2002). Quaternions: From classical mechanics to computer graphics, and beyond, Proceedings of the 7th Asian Technology Conference on Mathematics, Melaka, Malaysia, pp. 97–105.
[16] Murray, R.M. (1994). A Mathematical Introduction to Robotic Manipulation, CRC Press, Inc. Boca Raton, FL.
[17] Oezguer, E. and Mezouar, Y. (2016). Kinematic modeling and control of a robot arm using unit dual quaternions, Robotics and Autonomous Systems 77: 66–73.
[18] Sariyildiz, E., Cakiray, E. and Temeltas, H. (2011). A comparative study of three inverse kinematic methods of serial industrial robot manipulators in the screw theory framework, International Journal of Advanced Robotic Systems 8(5): 9–24.
[19] Sariyildiz, E. and Temeltas, H. (2012). A new formulation method for solving kinematic problems of multiarm robot systems using quaternion algebra in the screw theory framework, Turkish Journal of Electrical Engineering Computer Sciences 20(4): 607–628.
[20] Singh, A., Singla, E., Soni, S. and Singla, A. (2018). Kinematic modeling of a 7-degree of freedom spatial hybrid manipulator for medical surgery, Proceedings of the Institution of Mechanical Engineers H: Journal of Engineering in Medicine 232(1): 12–23.
[21] Tan, Q. and Balchen, J.G. (1993). General quaternion transformation representation for robotic application, Proceedings of the IEEE Systems Man and Cybernetics Conference, Le Touquet, France, Vol. 3, pp. 319–324.
[22] Vidaković, J.Z., Lazarević, M.P., Kvrgić, V.M., Dančuo, Z.Z. and Ferenc, G.Z. (2014). Advanced quaternion forward kinematics algorithm including overview of different methods for robot kinematics, FME Transactions 42(3): 189–198.
[23] Wang, H., Lu, X., Sheng, C., Zhang, Z., Cui, W. and Li, Y. (2018). General frame for arbitrary 3R subproblems based on the POE model, Robotics and Autonomous Systems 105: 138–145.
[24] Wang, J.-Y., Liang, H.-Z., Sun, Z.-W., Wu, S.-N. and Zhang, S.-J. (2013). Relative motion coupled control based on dual quaternion, Aerospace Science and Technology 25(1): 102–113.
[25] Wang, X., Yu, C. and Lin, Z. (2012). A dual quaternion solution to attitude and position control for rigid-body coordination, IEEE Transactions on Robotics 28(5): 1162–1170.
[26] Xiong, G., Ding, Y., Zhu, L. and Su, C.-Y. (2017). A product-of-exponential-based robot calibration method with optimal measurement configurations, International Journal of Advanced Robotic Systems 14(6): 1–11.
[27] Yue-sheng, T. and Ai-Ping, X. (2008). Extension of the second Paden–Kahan sub-problem and its application in the inverse kinematics of a manipulator, IEEE Conference on Robotics, Automation and Mechatronics, Chengdu, China, pp. 379-381, DOI:10.1109/RAMECH.2008.4681401.
[28] Zhao, R., Shi, Z., Guan, Y., Shao, Z., Zhang, Q. and Wang, G. (2018). Inverse kinematic solution of 6R robot manipulators based on screw theory and the paden-kahan subproblem, International Journal of Advanced Robotic Systems 15(6): 1–11.
[29] Zhu, C. and Zhao, Z. (2019). Research on influence of joint clearance on precision of 3-TPT parallel robot, Mechanical Sciences 10(1): 287–298.