Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2020_30_2_a10, author = {Yuan, Feng and Zhu, Xiaoming and Wang, Yulei}, title = {Deformed solitons of a typical set of (2+1)-dimensional complex modified {Korteweg{\textendash}de} {Vries} equations}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {337--350}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_2_a10/} }
TY - JOUR AU - Yuan, Feng AU - Zhu, Xiaoming AU - Wang, Yulei TI - Deformed solitons of a typical set of (2+1)-dimensional complex modified Korteweg–de Vries equations JO - International Journal of Applied Mathematics and Computer Science PY - 2020 SP - 337 EP - 350 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_2_a10/ LA - en ID - IJAMCS_2020_30_2_a10 ER -
%0 Journal Article %A Yuan, Feng %A Zhu, Xiaoming %A Wang, Yulei %T Deformed solitons of a typical set of (2+1)-dimensional complex modified Korteweg–de Vries equations %J International Journal of Applied Mathematics and Computer Science %D 2020 %P 337-350 %V 30 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_2_a10/ %G en %F IJAMCS_2020_30_2_a10
Yuan, Feng; Zhu, Xiaoming; Wang, Yulei. Deformed solitons of a typical set of (2+1)-dimensional complex modified Korteweg–de Vries equations. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 2, pp. 337-350. http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_2_a10/
[1] Ablowitz, M.J., Ablowitz, M.A., Clarkson, P.A. and Clarkson, P.A. (1991). Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge.
[2] Biondini, G. (2007). Line soliton interactions of the Kadomtsev–Petviashvili equation, Physical Review Letters 99(6): 064103.
[3] Dai, C.Q., Zhu, S.Q., Wang, L.L. and Zhang, J.F. (2010). Exact spatial similaritons for the generalized (2+1)-dimensional nonlinear Schrödinger equation with distributed coefficients, EPL (Europhysics Letters) 92(2): 24005.
[4] El-Tantawy, S.A. and Moslem, W.M. (2014). Nonlinear structures of the Korteweg–de Vries and modified Korteweg–de Vries equations in non-Maxwellian electron-positron-ion plasma: Solitons collision and rogue waves, Physics of Plasmas 21(5): 052112.
[5] Erbay, H.A. (1998). Nonlinear transverse waves in a generalized elastic solid and the complex modified Korteweg–de Vries equation, Physica Scripta 58(1): 9.
[6] Erbay, S. and Şuhubi, E.S. (1989). Nonlinear wave propagation in micropolar media. II: Special cases, solitary waves and Painlevé analysis, International Journal of Engineering Science 27(8): 915–919.
[7] Gorbacheva, O.B. and Ostrovsky, L.A. (1983). Nonlinear vector waves in a mechanical model of a molecular chain, Physica D: Nonlinear Phenomena 8(1–2): 223–228.
[8] He, J.S., Tao, Y.S., Porsezian, K. and Fokas, A.S. (2013). Rogue wave management in an inhomogeneous nonlinear fibre with higher order effects, Journal of Nonlinear Mathematical Physics 20(3): 407–419.
[9] He, J.S., Wang, L.H., Li, L.J., Porsezian, K. and Erdélyi, R. (2014). Few-cycle optical rogue waves: Complex modified Korteweg–de Vries equation, Physical Review E 89(6): 062917.
[10] Hirota, R. (1972). Exact solution of the modified Korteweg–de Vries equation for multiple collisions of solitons, Journal of the Physical Society of Japan 33(5): 1456–1458.
[11] Kao, C.Y. and Kodama, Y. (2012). Numerical study of the KP equation for non-periodic waves, Mathematics and Computers in Simulation 82(7): 1185–1218.
[12] Karney, C.F.F., Sen, A. and Chu, F.Y.F. (1979). Nonlinear evolution of lower hybrid waves, The Physics of Fluids 22(5): 940–952.
[13] Khater, A.H., El-Kalaawy, O.H. and Callebaut, D.K. (1998). Bäcklund transformations and exact solutions for Alfvén solitons in a relativistic electron–positron plasma, Physica Scripta 58(6): 545.
[14] Kodama, Y., Oikawa, M. and Tsuji, H. (2009). Soliton solutions of the KP equation with V-shape initial waves, Journal of Physics A: Mathematical and Theoretical 42(31): 312001.
[15] Komatsu, T.S. and Sasa, S.-i. (1995). Kink soliton characterizing traffic congestion, Physical Review E 52(5): 5574.
[16] Korteweg, D.J. and de Vries, G. (1895). XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 39(240): 422.
[17] Kundu, A. (2008). Exact accelerating solitons in nonholonomic deformation of the KdV equation with a two-fold integrable hierarchy, Journal of Physics A: Mathematical and Theoretical 41(49): 495201.
[18] Li, Z.J., Hai, W.H. and Deng, Y. (2013). Nonautonomous deformed solitons in a Bose–Einstein condensate, Chinese Physics B 22(9): 090505.
[19] Liu, X.T., Yong, X.L., Huang, Y.H., Yu, R. and Gao, J.W. (2015). Deformed soliton, breather and rogue wave solutions of an inhomogeneous nonlinear Hirota equation, Communications min Nonlinear Science and Numerical Simulation 29(1–3): 257–266.
[20] Lonngren, K. E. (1998). Ion acoustic soliton experiments in a plasma, Optical and Quantum Electronics 30(7–10): 615–630.
[21] Lü, X., Zhu, H. W. Meng, X.H.Y.Z.C. and Tian, B. (2007). Soliton solutions and a Bäcklund transformation for a generalized nonlinear Schrödinger equation with variable coefficients from optical fiber communications, Journal of Mathematical Analysis and Applications 336(2): 1305–1315.
[22] Mollenauer, L.F., Stolen, R.H. and Gordon, J.P. (1980). Experimental observation of picosecond pulse narrowing and solitons in optical fibers, Physical Review Letters 45(13): 1095.
[23] Myrzakulov, R., Mamyrbekova, G., Nugmanova, G. and Lakshmanan, M. (2015). Integrable (2+1)-dimensional spin models with self-consistent potentials, Symmetry 7(3): 1352–1375.
[24] Osman, M.S. and Wazwaz, A.M. (2018). An efficient algorithm to construct multi-soliton rational solutions of the (2+1)-dimensional KdV equation with variable coefficients, Applied Mathematics and Computation 321: 282–289.
[25] Pal, R., Kaur, H., Raju, T.S. and Kumar, C. (2017). Periodic and rational solutions of variable-coefficient modified Korteweg–de Vries equation, Nonlinear Dynamics 89(1): 617–622.
[26] Porsezian, K., Seenuvasakumaran, P. and Ganapathy, R. (2006). Optical solitons in some deformed MB and NLS–MB equations, Physics Letters A 348(3–6): 233–243.
[27] Russell, S.J. (1844). Report on waves, 14th Meeting of the British Association for the Advancement of Science, York, UK, pp. 311–390.
[28] Sun, Z.Y. Gao, Y.T.L.Y. and Yu, X. (2011). Soliton management for a variable-coefficient modified Korteweg–de Vries equation, Physical Review E 84(2): 026606.
[29] Tao, Y.S., He, J.S. and Porsezian, K. (2013). Deformed soliton, breather, and rogue wave solutions of an inhomogeneous nonlinear Schrödinger equation, Chinese Physics B 22(7): 074210.
[30] Wadati, M. (1972). The exact solution of the modified Korteweg–de Vries equation, Journal of the Physical Society of Japan 32(6): 1681–1681.
[31] Wadati, M. (2008). Construction of parity-time symmetric potential through the soliton theory, Journal of the Physical Society of Japan 77(7): 074005.
[32] Wadati, M. and Ohkuma, K. (1982). Multiple-pole solutions of the modified Korteweg–de Vries equation, Journal of the Physical Society of Japan 51(6): 2029–2035.
[33] Wu, H.X., Zeng, Y.B. and Fan, T.Y. (2008). Complexitons of the modified KdV equation by Darboux transformation, Applied Mathematics and Computation 196(2): 501–510.
[34] Xing, Q.X., Wang, L.H., Mihalache, D., Porsezian, K. and He, J.S. (2017a). Construction of rational solutions of the real modified Korteweg–de Vries equation from its periodic solutions, Chaos: An Interdisciplinary Journal of Nonlinear Science 27(5): 053102.
[35] Xing, Q.X., Wu, Z.W., Mihalache, D. and He, J.S. (2017b). Smooth positon solutions of the focusing modified Korteweg–de Vries equation, Nonlinear Dynamics 89(4): 2299–2310.
[36] Xu, T.X., Qiao, Z.J. and Li, Y. (2011). Darboux transformation and shock solitons for complex mKdV equation, Pacific Journal of Applied Mathematics 3(1/2): 137.
[37] Yan, J.L. and Zheng, L.H. (2017). Conservative finite volume element schemes for the complex modified Korteweg–de Vries equation, International Journal of Applied Mathematics and Computer Science 27(3): 515–525. DOI:10.1515/amcs-2017-0036.
[38] Yesmakhanova, K., Shaikhova, G., Bekova, G. and Myrzakulov, R. (2017). Darboux transformation and soliton solution for the (2+1)-dimensional complex modified Korteweg–de Vries equations, Journal of Physics: Conference Series 936: 012045.
[39] Zabusky, N.J. and Kruskal, M.D. (1965). Interaction of solitons in a collisionless plasma and the recurrence of initial states, Physical Review Letters 15(6): 240.
[40] Zha, Q.L. and Li, Z.B. (2008). Darboux transformation and multi-solitons for complex mKdV equation, Chinese Physics Letters 25(1): 8.
[41] Zhang, H.Q. Tian, B.L.L.L. and Xue, Y.S. (2009). Darboux transformation and soliton solutions for the (2+1)-dimensional nonlinear Schrödinger hierarchy with symbolic computation, Physica A: Statistical Mechanics and Its Applications 388(1): 9–20.
[42] Zhang, Y.S., Guo, L.J., Chabchoub, A. and He, J.S. (2017). Higher-order rogue wave dynamics for a derivative nonlinear Schrödinger equation, Romanian Journal of Physics 62: 102.
[43] Zhang, Y.S., Guo, L.J., He, J.S. and Zhou, Z.X. (2015). Darboux transformation of the second-type derivative nonlinear Schrödinger equation, Letters in Mathematical Physics 105(6): 853–891.