Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2020_30_2_a1, author = {Kaczorek, Tadeusz and Ruszewski, Andrzej}, title = {Application of the {Drazin} inverse to the analysis of pointwise completeness and pointwise degeneracy of descriptor fractional linear continuous-time systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {219--223}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_2_a1/} }
TY - JOUR AU - Kaczorek, Tadeusz AU - Ruszewski, Andrzej TI - Application of the Drazin inverse to the analysis of pointwise completeness and pointwise degeneracy of descriptor fractional linear continuous-time systems JO - International Journal of Applied Mathematics and Computer Science PY - 2020 SP - 219 EP - 223 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_2_a1/ LA - en ID - IJAMCS_2020_30_2_a1 ER -
%0 Journal Article %A Kaczorek, Tadeusz %A Ruszewski, Andrzej %T Application of the Drazin inverse to the analysis of pointwise completeness and pointwise degeneracy of descriptor fractional linear continuous-time systems %J International Journal of Applied Mathematics and Computer Science %D 2020 %P 219-223 %V 30 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_2_a1/ %G en %F IJAMCS_2020_30_2_a1
Kaczorek, Tadeusz; Ruszewski, Andrzej. Application of the Drazin inverse to the analysis of pointwise completeness and pointwise degeneracy of descriptor fractional linear continuous-time systems. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 2, pp. 219-223. http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_2_a1/
[1] Busłowicz, M. (2008). Pointwise completeness and pointwise degeneracy of linear discrete-time systems of fractional order, Scientific Journal of the Silesian University of Technology: Automation 151(1797): 19–24, (in Polish).
[2] Busłowicz, M., Kociszewski, R. and Trzasko, W. (2006). Pointwise completeness and pointwise degeneracy of positive discrete-time systems with delays, Scientific Journal of the Silesian University of Technology: Automation 145(1728): 51–56, (in Polish).
[3] Choundhury, A.K. (1972). Necessary and sufficient conditions of pointwise completeness of linear time-invariant delay-differential systems, International Journal of Control 16(6): 1083–1100.
[4] Kaczorek, T. (2010a). Pointwise completeness and pointwise degeneracy of standard and positive hybrid linear systems described by the general model, Archives of Control Sciences 2(2): 121–131.
[5] Kaczorek, T. (2010b). Pointwise completeness and pointwise degeneracy of standard and positive linear systems with state-feedbacks, Journal of Automation, Mobile Robotics and Intelligent Systems 4(1): 3–7.
[6] Kaczorek, T. (2011). Selected Problems of Fractional Systems Theory, Springer, Berlin.
[7] Kaczorek, T. (2019). Application of the Drazin inverse of matrices to analysis of the pointwise completeness and the pointwise degeneracy of the descriptor linear systems, 15th International Conference on Dynamical Systems Theory and Applications, Łódź, Poland, pp. 198–204.
[8] Kaczorek, T. and Busłowicz, M. (2009). Pointwise completeness and pointwise degeneracy of linear continuous-time fractional order systems, Journal of Automation, Mobile Robotics and Intelligent Systems 3(1): 8–11.
[9] Kaczorek, T. and Rogowski, K. (2015). Fractional Linear Systems and Electrical Circuits, Springer, Cham.
[10] Olbrot, A. (1972). On degeneracy and related problems for linear constant time-lag systems, Ricerche di Automatica 3(3): 203–220.
[11] Popov, V.M. (1972). Pointwise degeneracy of linear time-invariant delay-differential equations, Journal of Differential Equations 11(3): 541–561.
[12] Trzasko, W., Busłowicz, M. and Kaczorek T. (2007). Pointwise completeness of discrete-time cone-systems with delays, Proceedings of the International Conference on Computer as a Tool, EUROCON 2007, Warsaw, Poland, pp. 606–611.