Variable-structure repetitive control for discrete-time linear systems with multiple-period exogenous signals
International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 2, pp. 207-218.

Voir la notice de l'article provenant de la source Library of Science

A new method to construct a discrete-time variable-structure repetitive controller for a class of linear systems perturbed by multiple-period exogenous signals is presented. The proposed control scheme combines the features of the discrete-time multiple-period repetitive control (MP-RC) and variable-structure control (VSC) techniques. The MP-RC part is assigned to simultaneously track and reject periodic signals consisting of multiple uncorrelated fundamental frequencies. The VSC part is then integrated to provide a fast transient response and robustness against plant parameter variations. Stability and robustness analyses are also elaborated to ensure that the resulting closed-loop system satisfies the desired control objectives. Moreover, it is shown through an example that the repetitive control system constructed using the proposed control method can effectively track a sinusoidal reference signal despite the presence of a multiple-period disturbance.
Keywords: repetitive control, variable structure control, multiple period signal, fast transient response
Mots-clés : sterowanie powtarzalne, sterowanie o zmiennej strukturze, odpowiedź przejściowa
@article{IJAMCS_2020_30_2_a0,
     author = {Kurniawan, Edi and Harno, Hendra G. and Wijonarko, Sensus and Widiyatmoko, Bambang and Bayuwati, Dwi and Purwowibowo, Purwowibowo and Maftukhah, Tatik},
     title = {Variable-structure repetitive control for discrete-time linear systems with multiple-period exogenous signals},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {207--218},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_2_a0/}
}
TY  - JOUR
AU  - Kurniawan, Edi
AU  - Harno, Hendra G.
AU  - Wijonarko, Sensus
AU  - Widiyatmoko, Bambang
AU  - Bayuwati, Dwi
AU  - Purwowibowo, Purwowibowo
AU  - Maftukhah, Tatik
TI  - Variable-structure repetitive control for discrete-time linear systems with multiple-period exogenous signals
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2020
SP  - 207
EP  - 218
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_2_a0/
LA  - en
ID  - IJAMCS_2020_30_2_a0
ER  - 
%0 Journal Article
%A Kurniawan, Edi
%A Harno, Hendra G.
%A Wijonarko, Sensus
%A Widiyatmoko, Bambang
%A Bayuwati, Dwi
%A Purwowibowo, Purwowibowo
%A Maftukhah, Tatik
%T Variable-structure repetitive control for discrete-time linear systems with multiple-period exogenous signals
%J International Journal of Applied Mathematics and Computer Science
%D 2020
%P 207-218
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_2_a0/
%G en
%F IJAMCS_2020_30_2_a0
Kurniawan, Edi; Harno, Hendra G.; Wijonarko, Sensus; Widiyatmoko, Bambang; Bayuwati, Dwi; Purwowibowo, Purwowibowo; Maftukhah, Tatik. Variable-structure repetitive control for discrete-time linear systems with multiple-period exogenous signals. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 2, pp. 207-218. http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_2_a0/

[1] Bartoszewicz, A. and Lesniewski, P. (2016). New switching and nonswitching type reaching laws for SMC of discrete time systems, IEEE Transactions on Control Systems Technology 24(2): 670–677.

[2] Chen, S., Lai, Y.M., Tan, S.C. and Tse, C.K. (2009). Fast response low harmonic distortion control scheme for voltage source inverters, IET Power Electronics 2(5): 575–584.

[3] Chen, X. and Tomizuka, M. (2014). New repetitive control with improved steady-state performance and accelerated transient, IEEE Transactions on Control Systems Technology 22(2): 664–675.

[4] Flores, J.V., Da Silva, J.M.G., Pereira, L.F.A. and Sbarbaro, D.G. (2012). Repetitive control design for MIMO systems with saturating actuators, IEEE Transactions on Automatic Control 57(1): 192–198.

[5] Francis, B. and Wonham, W. (1975). The internal model principle for linear multivariable regulators, Applied Mathematics and Optimization 2(2): 170–194.

[6] Gao, W., Wang, Y. and Homaifa, A. (1995). Discrete-time variable structure control systems, IEEE Transactions on Industrial Electronics 42(2): 117–122.

[7] Grino, R. and Costa-Castello, R. (2005). Digital repetitive plug-in controller for odd-harmonic periodic references and disturbances, Automatica 41(1): 153–157.

[8] Hillerstrom, G. and Walgama, K. (1996). Repetitive control theory and applications—A survey, IFAC Proceedings Volumes 29(1): 1446–1451.

[9] Hornik, T. and Zhong, Q.-C. (2011). A current-control strategy for voltage-source inverters in microgrids based on h∞ and repetitive control, IEEE Transactions on Power Electronics 26(3): 943–952.

[10] Kurniawan, E., Afandi, M.I. and Suryadi, S. (2017). Repetitive control system for tracking and rejection of multiple periodic signals, Proceedings of the 2017 International Conference on Robotics, Automation and Sciences, Melaka, Malaysia, pp. 1–5.

[11] Kurniawan, E., Cao, Z. and Man, Z. (2014). Design of robust repetitive control with time-varying sampling periods, IEEE Transactions on Industrial Electronics 61(6): 2834–2841.

[12] Kurniawan, E., Cao, Z., Mitrevska, M. and Man, Z. (2016a). Design of decentralized multi-input multi-output repetitive control systems, International Journal of Automation and Computing Science 13(6): 615–623.

[13] Kurniawan, E., Wardoyo, R. and Gojali, E.A. (2016b). Tracking and robust performance of discrete-time model-based controller, Proceedings of the 2016 International Conference on Computer, Control, Informatics and Its Applications, Jakarta, Indonesia, pp. 28–32.

[14] Li, C.X., Gu, G.Y., Yang, M.J. and Zhu, L.M. (2017). High-speed tracking of a nanopositioning stage using modified repetitive control, IEEE Transactions on Automation Science and Engineering 14(3): 1467–1477.

[15] Longman, R.W. (2010). On the theory and design of linear repetitive control systems, European Journal of Control 16(5): 447–496.

[16] Lorenzini, C., Flores, J.V., Pereira, L.F.A. and Pereira, L.A. (2018). Resonant-repetitive controller with phase correction applied to uninterruptible power supplies, Control Engineering Practice 77: 118–126.

[17] Lu, Y.S., Wu, B.X. and Lien, S.F. (2012). An improved sliding-mode repetitive learning control scheme using wavelet transform, Asian Journal of Control 14(4): 991–1001.

[18] Ma, H., Li, Y. and Xiong, Z. (2019). Discrete-time sliding-mode control with enhanced power reaching law, IEEE Transactions on Industrial Electronics 66(6): 4629–4638.

[19] Mingxuan, S., Youyi, W. and Wang, D. (2005). Variable-structure repetitive control: A discrete-time strategy, IEEE Transactions on Industrial Electronics 52(2): 610–616.

[20] Mitrevska, M., Cao, Z., Zheng, J., Kurniawan, E. and Man, Z. (2018). Design of a robust discrete-time phase lead repetitive control in frequency domain for a linear actuator with multiple phase uncertainties, International Journal of Control, Automation and Systems 16(6): 2609–2620.

[21] Muramatsu, H. and Katsura, S. (2018). An adaptive periodic-disturbance observer for periodic-disturbance suppression, IEEE Transactions on Industrial Informatics 14(10): 4446–4456.

[22] Owens, D.H., Li, L.M. and Banks, S.P. (2004). Multi-periodic repetitive control system: A Lyapunov stability analysis for MIMO systems, International Journal of Control 77(5): 504–515.

[23] Pérez-Arancibia, N.O., Tsao, T.C. and Gibson, J.S. (2010). A new method for synthesizing multiple-period adaptive-repetitive controllers and its application to the control of hard disk drives, Automatica 46(7): 1186–1195.

[24] Rashed, M., Klumpner, C. and Asher, G. (2013). Repetitive and resonant control for a single-phase grid-connected hybrid cascaded multilevel converter, IEEE Transactions on Power Electronics 28(5): 2224–2234.

[25] Sakthivel, R., Selvaraj, P. and Kaviarasan, B. (2020). Modified repetitive control design for nonlinear systems with time delay based on T–S fuzzy model, IEEE Transactions on Systems, Man, and Cybernetics: Systems 50(2): 646–655.

[26] Sun, Y., Qiang, H., Mei, X. and Teng, Y. (2018). Modified repetitive learning control with unidirectional control input for uncertain nonlinear systems, Neural Computing and Applications 30: 2003–2012.

[27] Tomei, P. and Verrelli, C.M. (2015). Linear repetitive learning controls for nonlinear systems by Padé approximants, International Journal of Adaptive Control and Signal Processing 29(6): 783–804.

[28] Wang, Y., Wang, R., Xie, X. and Zhang, H. (2018). Observer-based h∞ fuzzy control for modified repetitive control systems, Neurocomputing 286: 141–149.

[29] Zhang, J., Shi, P., Xia, Y. and Yang, H. (2019). Discrete-time sliding mode control with disturbance rejection, IEEE Transactions on Industrial Electronics 66(10): 7967–7975.

[30] Zhou, L., Cheng, L., She, J. and Zhang, Z. (2019). Generalized extended state observer–based repetitive control for systems with mismatched disturbances, International Journal of Robust and Nonlinear Control 29(11): 3777–3792.

[31] Zhou, L., She, J., Li, C. and Pan, C. (2016). Robust aperiodic-disturbance rejection in an uncertain modified repetitive-control system, International Journal of Applied Mathematics and Computer Science 26(2): 285–295, DOI: 10.1515/amcs-2016-0020.

[32] Zhou, L., She, J., Zhang, X.M., Cao, Z. and Zhang, Z. (2020). Performance enhancement of repetitive-control systems and application to tracking control of chuck-workpiece systems, IEEE Transactions on Industrial Electronics 67(5): 4056–4065.