Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2020_30_1_a8, author = {Zhou, Bo and Yang, Yu-Fei and Hu, Bo-Xia}, title = {A second-order {TV-based} coupling model and an {ADMM} algorithm for {MR} image reconstruction}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {113--122}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a8/} }
TY - JOUR AU - Zhou, Bo AU - Yang, Yu-Fei AU - Hu, Bo-Xia TI - A second-order TV-based coupling model and an ADMM algorithm for MR image reconstruction JO - International Journal of Applied Mathematics and Computer Science PY - 2020 SP - 113 EP - 122 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a8/ LA - en ID - IJAMCS_2020_30_1_a8 ER -
%0 Journal Article %A Zhou, Bo %A Yang, Yu-Fei %A Hu, Bo-Xia %T A second-order TV-based coupling model and an ADMM algorithm for MR image reconstruction %J International Journal of Applied Mathematics and Computer Science %D 2020 %P 113-122 %V 30 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a8/ %G en %F IJAMCS_2020_30_1_a8
Zhou, Bo; Yang, Yu-Fei; Hu, Bo-Xia. A second-order TV-based coupling model and an ADMM algorithm for MR image reconstruction. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 1, pp. 113-122. http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a8/
[1] Chan, R.H., Yang, J. and Yuan, X. (2011). Alternating direction method for image inpainting in wavelet domains, SIAM Journal on Imaging Sciences 4(4): 807–826.
[2] Chen, Y., Hager, W., Huang, F., Phan, D. and Ye, X. (2012). A fast algorithm for image reconstruction with application to partially parallel MR imaging, SIAM Journal on Imaging Sciences 5(1): 90–118.
[3] Dong, F., Liu, Z., Kong, D. and Liu, K. (2009). An improved lot model for image restoration, Journal of Mathematical Imaging and Vision 34(1): 89–97.
[4] Hao, Y., Feng, X.C. and Xu, J.L. (2012). Split Bregman algorithm for a novel denoising model, Journal of Electronics and Information Technology 34(3): 557–563.
[5] Lustig,M., Donoho, D. and Pauly, J.M. (2007). SparseMRI: The application of compressed sensing for rapid MR imaging, Magnetic Resonance in Medicine 58(6): 1182–1195.
[6] Lysaker, M., Lundervold, A. and Tai, X.C. (2003). Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE Transactions on Image Processing 12(12): 1579–1590.
[7] Lysaker, M., Osher, S. and Tai, X.C. (2004). Noise removal using smoothed normals and surface fitting, IEEE Transactions on Image Processing 13(10): 1345–1357.
[8] Miao, J., Wong, W.C.K., Narayan, S., Huo, D. and Wilson, D.L. (2011). Modeling non-stationarity of kernel weights for k-space reconstruction in partially parallel imaging, Medical Physics 38(8): 4760–4773.
[9] Och, J., Clarke, G. and Sobol, W.T. (1992). Acceptance testing of magnetic resonance imaging systems: Report of AAPM nuclear magnetic resonance task group no. 6, Medical Physics 19(1): 217–229.
[10] Price, R.R., Axel, L., Morgan, T., Newman, R., Perman, W., Schneiders, N., Selikson, M., Wood, M. and Thomas, S.R. (1990). Quality assurance methods and phantoms for magnetic resonance imaging: Report of the AAPM nuclear magnetic resonance task group no. 1, Medical Physics 17(2): 287–295.
[11] Rudin, L.I., Osher, S. and Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena 60(1–4): 259–268.
[12] Steidl, G. (2006). A note on the dual treatment of higher order regularization functionals, Computing 76(1–2): 135–148.
[13] Wang, Y., Yin, W. and Zhang, Y. (2007). A fast algorithm for image deblurring with total variation regularization, CAAM technical report, Rice University, Houston, TX, pp. TR07–10.
[14] Wright, S.J., Nowak, R.D. and Figueiredo, M.A.T. (2009). Sparse reconstruction by separable approximation, IEEE Transactions on Signal Processing 57(7): 2479–2493.
[15] Xie, W.S., Yang, Y.F. and Zhou, B. (2014). An ADMM algorithm for second-order TV-based MR image reconstruction, Numerical Algorithms 67(4): 827–843.
[16] Yang, J., Zhang, Y. and Yin, W. (2010). A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data, IEEE Journal of Selected Topics in Signal Processing 4(2): 288–297.
[17] Yang, Y.F., Pang, Z.F., Shi, B.L. and Wang, Z.G. (2011). Split Bregman method for the modified lot model in image denoising, Applied Mathematics and Computation 217(12): 5392–5403.
[18] Ye, X., Chen, Y. and Huang, F. (2011). Computational acceleration for MR image reconstruction in partially parallel imaging, IEEE Transactions on Medical Imaging 30(5): 1055–1063.
[19] You, Y.L. and Kaveh,M. (2000). Fourth-order partial differential equations for noise removal, IEEE Transactions on Image Processing 9(10): 1723–1730.