Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2020_30_1_a7, author = {Gao, Depeng and Wu, Rui and Liu, Jiafeng and Fan, Xiaopeng and Tang, Xianglong}, title = {Finding robust transfer features for unsupervised domain adaptation}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {99--112}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a7/} }
TY - JOUR AU - Gao, Depeng AU - Wu, Rui AU - Liu, Jiafeng AU - Fan, Xiaopeng AU - Tang, Xianglong TI - Finding robust transfer features for unsupervised domain adaptation JO - International Journal of Applied Mathematics and Computer Science PY - 2020 SP - 99 EP - 112 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a7/ LA - en ID - IJAMCS_2020_30_1_a7 ER -
%0 Journal Article %A Gao, Depeng %A Wu, Rui %A Liu, Jiafeng %A Fan, Xiaopeng %A Tang, Xianglong %T Finding robust transfer features for unsupervised domain adaptation %J International Journal of Applied Mathematics and Computer Science %D 2020 %P 99-112 %V 30 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a7/ %G en %F IJAMCS_2020_30_1_a7
Gao, Depeng; Wu, Rui; Liu, Jiafeng; Fan, Xiaopeng; Tang, Xianglong. Finding robust transfer features for unsupervised domain adaptation. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 1, pp. 99-112. http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a7/
[1] Bay, H., Tuytelaars, T. and Van Gool, L. (2006). SURF: Speeded up robust features, European Conference on Computer Vision, Graz, Austria, pp. 404–417.
[2] Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation, Neural Computation 15(6): 1373–1396.
[3] Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E. and Darrell, T. (2014). DeCAF: A deep convolutional activation feature for generic visual recognition, International Conference on Machine Learning, Beijing, China, pp. 647–655.
[4] Duan, L., Tsang, I.W., Xu, D. and Maybank, S.J. (2009). Domain transfer SVM for video concept detection, 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, pp. 1375–1381.
[5] Fukunaga and Keinosuke (1990). Introduction to Statistical Pattern Recognition, 2nd Edn, Academic Press, San Diego, CA, pp. 2133–2143.
[6] Gheisari, M. and Baghshah, M.S. (2015). Unsupervised domain adaptation via representation learning and adaptive classifier learning, Neurocomputing 165: 300–311.
[7] Gong, B., Grauman, K. and Sha, F. (2013). Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation, Proceedings of the 30th International Conference on International Conference on Machine Learning, ICML’13, Atlanta, GA, USA, pp. 222–230.
[8] Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B. and Smola, A. (2012). A kernel two-sample test, Journal of Machine Learning Research 13(1): 723–773.
[9] Griffin, G., Holub, A. and Perona, P. (2007). Caltech-256 object category dataset, https://authors.library.caltech.edu/7694/.
[10] He, X. (2003). Locality preserving projections, Advances in Neural Information Processing Systems 16(1): 186–197.
[11] He, X. and Niyogi, P. (2004). Locality preserving projections, Advances in Neural Information Processing Systems, Vancouver, Canada, pp. 153–160.
[12] Hongfu, L., Ming, S., Zhengming, D. and Yun, F. (2019). Structure-preserved unsupervised domain adaptation, IEEE Transactions on Knowledge and Data Engineering 31(4): 799–812.
[13] Li, S., Song, S., Huang, G., Ding, Z. and Wu, C. (2018). Domain invariant and class discriminative feature learning for visual domain adaptation, IEEE Transactions on Image Processing 27(9): 4260–4273.
[14] Long, M., Wang, J., Ding, G., Sun, J. and Yu, P.S. (2013). Transfer feature learning with joint distribution adaptation, 2013 IEEE International Conference on Computer Vision, Portland, OR, USA, pp. 2200–2207.
[15] Long, M., Wang, J., Ding, G., Sun, J. and Yu, P.S. (2014). Transfer joint matching for unsupervised domain adaptation, IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, pp. 1410–1417.
[16] Mardia, K.V., Kent, J.T. and Bibby, J.M. (1979). Multivariate analysis, Mathematical Gazette 37(1): 123–131.
[17] Nene, S.A., Nayar, S.K. and Murase, H. (1996). Columbia object image library (coil-20), Technical Report CUCS-005-96, Columbia University, New York, NY, http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php.
[18] Pan, S.J., Tsang, I.W., Kwok, J.T. and Yang, Q. (2011). Domain adaptation via transfer component analysis, IEEE Transactions on Neural Networks 22(2): 199.
[19] Pan, S.J. and Yang, Q. (2010). A survey on transfer learning, IEEE Transactions on Knowledge and Data Engineering 22(10): 1345–1359.
[20] Roweis, S.T. and Saul, L.K. (2000). Nonlinear dimensionality reduction by locally linear embedding, Science 290(5500): 2323–2326.
[21] Saenko, K., Kulis, B., Fritz, M. and Darrell, T. (2010). Adapting visual category models to new domains, European Conference on Computer Vision, Crete, Greece, pp. 213–226.
[22] Sha, F., Shi, Y., Gong, B. and Grauman, K. (2012). Geodesic flow kernel for unsupervised domain adaptation, 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, pp. 2066–2073.
[23] Tahmoresnezhad, J. and Hashemi, S. (2016). Visual domain adaptation via transfer feature learning, Knowledge and Information Systems 50(2): 1–21.
[24] Tan, Q., Deng, H. and Yang, P. (2012). Kernel mean matching with a large margin, International Conference on Advanced Data Mining and Applications, Nanijing, China, pp. 223–234.
[25] Tao, J., Wen, S. and Hu, W. (2015). Robust domain adaptation image classification via sparse and low rank representation, Journal of Visual Communication and Image Representation 33: 134–148.
[26] Ting, X., Peng, L., Wei, Z., Hongwei, L. and Xianglong, T. (2019). Structure preservation and distribution alignment in discriminative transfer subspace learning, Neurocomputing 337: 218–234.
[27] Wei, J., Liang, J., He, R. and Yang, J. (2018). Learning discriminative geodesic flow kernel for unsupervised domain adaptation, 2018 IEEE International Conference on Multimedia and Expo (ICME), San Diego, CA, USA, pp. 1–6.
[28] Yang, J., Yan, R. and Hauptmann, A.G. (2007). Cross-domain video concept detection using adaptive SVMs, Proceedings of the 15th ACM International Conference on Multimedia, Augsburg, Germany, pp. 188–197.
[29] Zhang, J., Li, W. and Ogunbona, P. (2017). Joint geometrical and statistical alignment for visual domain adaptation, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp. 5150–5158.