Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2020_30_1_a3, author = {Salazar, Jean Carlo and Sanjuan, Adri\'an and Nejjari, Fatiha and Sarrate, Ramon}, title = {Health-aware and fault-tolerant control of an octorotor {UAV} system based on actuator reliability}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {47--59}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a3/} }
TY - JOUR AU - Salazar, Jean Carlo AU - Sanjuan, Adrián AU - Nejjari, Fatiha AU - Sarrate, Ramon TI - Health-aware and fault-tolerant control of an octorotor UAV system based on actuator reliability JO - International Journal of Applied Mathematics and Computer Science PY - 2020 SP - 47 EP - 59 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a3/ LA - en ID - IJAMCS_2020_30_1_a3 ER -
%0 Journal Article %A Salazar, Jean Carlo %A Sanjuan, Adrián %A Nejjari, Fatiha %A Sarrate, Ramon %T Health-aware and fault-tolerant control of an octorotor UAV system based on actuator reliability %J International Journal of Applied Mathematics and Computer Science %D 2020 %P 47-59 %V 30 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a3/ %G en %F IJAMCS_2020_30_1_a3
Salazar, Jean Carlo; Sanjuan, Adrián; Nejjari, Fatiha; Sarrate, Ramon. Health-aware and fault-tolerant control of an octorotor UAV system based on actuator reliability. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 1, pp. 47-59. http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a3/
[1] Abdolhosseini, M., Zhang, Y. and Rabbath, C. (2013). An efficient model predictive control scheme for an unmanned quadrotor helicopter, Journal of Intelligent Robotic Systems 70(1–4): 27–38.
[2] Adîr, V. and Stoica, A. (2012). Integral LQR control of a star-shaped octorotor, INCAS BULLETIN 4(2): 3–18.
[3] Alwi, H. and Edwards, C. (2006). Sliding mode FTC with on-line control allocation, Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, CA, USA, pp. 5579–5584.
[4] Birnbaum, Z. (1969). On the importance of different components in a multicomponent system, in P. Krishnaiah (Ed.), Multivariate Analysis, Vol. II, Academic Press, New York, NY, pp. 581–592.
[5] Blakelock, J. (1991). Automatic Control of Aircraft and Missiles, John Wiley Sons, New York, NY.
[6] Bodson, M. (2002). Evaluation of optimization methods for control allocation, Journal of Guidance, Control, and Dynamics 25(4): 703–711.
[7] Bordingnon, K. and Durham, W. (1995). Closed-form solutions to constrained control allocation problem, Journal of Guidance, Control, and Dynamics 18(5): 1000–1007.
[8] Cen, Z., Noura, H. and Younes, Y.A. (2015). Systematic fault tolerant control based on adaptive Thau observer estimation for quadrotor UAVs, International Journal of Applied Mathematics and Computer Science 25(1): 159–174, DOI: 10.1515/amcs-2015-0012.
[9] Cox, D.R. (1972). Regression models and life-tables, Journal of the Royal Statistical Society B (Methodological) 34(2): 187–220.
[10] Durham, W.C. (1993). Constrained control allocation, Journal of Guidance, Control, and Dynamics 16(4): 717–725.
[11] Freddi, A., Lanzon, A. and Longhi, S. (2011). A feedback linearization approach to fault tolerance in quadrotor vehicles, IFAC Proceedings Volumes 44(1): 5413–5418.
[12] Gertsbakh, I.B. (2001). Reliability Theory: With Applications to Preventive Maintenance, 2nd Edn, Springer, New York, NY.
[13] Johansen, T. and Fossen, T. (2013). Control allocation—a survey, Automatica 49(5): 1087–1103.
[14] Khelassi, A., Theilliol, D., Weber, P. and Ponsart, J. (2011). Fault-tolerant control design with respect to actuator health degradation: An LMI approach, Proceedings of the IEEE International Conference on Control Applications (CCA), Denver, CO, USA, pp. 983–988.
[15] Liu, C., Chen, W.-H. and Andrews, J. (2012). Tracking control of small-scale helicopters using explicit nonlinear MPC augmented with disturbance observers, Control Engineering Practice 20(3): 258–268.
[16] Mahony, R., Kumar, V. and Corke, P. (2012). Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor, IEEE Robotics Automation Magazine 19(3): 20–32.
[17] Marks, A., Whidborne, J. and Yamamoto, I. (2012). Control allocation for fault tolerant control of a VTOL octorotor, 2012 UKACC International Conference on Control (CONTROL), Cardiff, UK, pp. 357–362.
[18] Merheb, A.-R., Noura, H. and Bateman, F. (2015). Design of passive fault-tolerant controllers of a quadrotor based on sliding mode theory, International Journal of Applied Mathematics and Computer Science 25(3): 561–576, DOI: 10.1515/amcs-2015-0042.
[19] Milhim, A., Zhang, Y. and Rabbath, C.-A. (2010). Gain scheduling based PID controller for fault tolerant control of quad-rotor UAV, Proceedings of AIAA Infotech@ Aerospace 2010, Atlanta, GA, USA, pp. 1–13.
[20] Ogata, K. (1995). Discrete-time Control Systems, 2nd Edn, Prentice-Hall, Upper Saddle River , NJ.
[21] Raffo, G., Ortega, M. and Rubio, F. (2010). An integral predictive/nonlinear control structure for a quadrotor helicopter, Automatica 46(1): 29–39.
[22] Rinaldi, F., Gargioli, A. and Quagliotti, F. (2014). PID and LQ regulation of a multirotor attitude: Mathematical modelling, simulations and experimental results, Journal of Intelligent Robotic Systems 73(1–4): 33–50.
[23] Rotondo, D., Nejjari, F. and Puig, V. (2015). Robust quasi-LPV model reference FTC of a quadrotor UAV subject to actuator faults, International Journal of Applied Mathematics and Computer Science 25(1): 7–22, DOI: 10.1515/amcs-2015-0001.
[24] Salazar, J., Nejjari, F., Sarrate, R., Weber, P. and Theilliol, D. (2016). Reliability importance measures for a health-aware control of drinking water networks, Proceedings of the 3rd Conference on Control and Fault-Tolerant Systems (Sys-Tol), Barcelona, Spain, pp. 572–578.
[25] Salazar, J., Sanjuan, A., Nejjari, F. and Sarrate, R. (2017). Health-Aware control of an octorotor UAV system based on actuator reliability, Proceedings of the 4th International Conference on Control, Decision and Information Technologies (CoDIT), Barcelona, Spain, pp. 815–820.
[26] Salazar, J., Weber, P., Nejjari, F., Theilliol, D. and Sarrate, R. (2015). MPC framework for system reliability optimization, in Z. Kowalczuk (Ed.), Advanced and Intelligent Computations in Diagnosis and Control, Springer International Publishing, Cham, pp. 161–177.
[27] Sanjuan, A., Nejjari, F. and Sarrate, R. (2019). Reconfigurability analysis of multirotor UAVs under actuator faults, Proceedings of the 4th Conference on Control and Fault-Tolerant Systems (SysTol), Casablanca, Morocco, pp. 26–31.
[28] Schneider, T., Ducard, G., Konrad, R. and Pascal, S. (2012). Fault-tolerant control allocation for multirotor helicopters using parametric programming, International Micro Air Vehicle Conference and Flight Competition (IMAV), Braunschweig, Germany, pp. 1–8.
[29] Zhang, Y., Chamseddine, A., Rabbath, C., Gordon, B., Su, C.-Y., Rakheja, S., Fulford, C., Apkarian, J. and Gosselin, P. (2013). Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed, Journal of the Franklin Institute 350(9): 2396–2422.