Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2020_30_1_a14, author = {Piegat, Andrzej and Dobryakova, Larisa}, title = {A decomposition approach to type 2 interval arithmetic}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {185--201}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a14/} }
TY - JOUR AU - Piegat, Andrzej AU - Dobryakova, Larisa TI - A decomposition approach to type 2 interval arithmetic JO - International Journal of Applied Mathematics and Computer Science PY - 2020 SP - 185 EP - 201 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a14/ LA - en ID - IJAMCS_2020_30_1_a14 ER -
%0 Journal Article %A Piegat, Andrzej %A Dobryakova, Larisa %T A decomposition approach to type 2 interval arithmetic %J International Journal of Applied Mathematics and Computer Science %D 2020 %P 185-201 %V 30 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a14/ %G en %F IJAMCS_2020_30_1_a14
Piegat, Andrzej; Dobryakova, Larisa. A decomposition approach to type 2 interval arithmetic. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 1, pp. 185-201. http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a14/
[1] Abolmasoumi, S. and Alavi, M. (2014). A method for calculating interval linear system, Journal of Mathematics and Computer Science 8(3): 193–204.
[2] Allahviranloo, T. and Babakordi, F. (2017). Algebraic solution of fuzzy linear system as: AX + BX = Y, Soft Computing 21(24): 7463–7472.
[3] De Figueiredo, L.H. and Stolphi, J. (2004). Affine arithmetic: Concepts and applications, Numerical Algorithms 37(1–4): 147–158.
[4] Dymowa, L. (2011). Soft Computing in Economics and Finance, Springer, Berlin/Heidelberg.
[5] Kaucher, E. (1980). Interval analysis in the extended interval space IR, in G. Alefeld and R.O. Grigorieff (Eds), Fundamentals of Numerical Computation (Computer-Oriented Numerical Analysis), Springer, Vienna, pp. 33–49.
[6] Lala, Z.M. (2017). Application of RDM interval arithmetic in decision making problem under uncertainty, Procedia Computer Science 120: 788–796.
[7] Landowski, M. (2015). Differences between Moore and RDM interval arithmetic, in P. Angelov et al. (Eds), Intelligent Systems’2014, Springer, Heidelberg/New York, NY, pp. 331–340.
[8] Lodwick, W.A. (1999). Constrained interval arithmetic, CCM report, University of Colorado at Denver, Denver, CO, http://www-math.ucdenver.edu/ccm/reports/index.shtml.
[9] Lodwick, W.A. and Dubois, D. (2015). Interval linear systems as a necessary step in fuzzy linear systems, Fuzzy Sets and Systems 281(15): 227–251.
[10] Mazandarani, M., Pariz, N. and Kamyad, A.V. (2018). Granular differentiability of fuzzy-number-valued functions, IEEE Transactions on Fuzzy Systems 26(1): 310–323.
[11] Moore, R. (1966). Interval Analysis, Prentice-Hall, Englewood Cliff, NJ.
[12] Najariyan, M. and Zhao, Y. (2017). Fuzzy fractional quadratic regulator problem under granular fuzzy fractional derivatives, IEEE Transactions on Fuzzy Systems 26(4): 2273–2288.
[13] Piegat, A. and Landowski, M. (2013). Two interpretations of multidimensional RDM interval arithmetic: Multiplication and division, International Journal of Fuzzy Systems 15(4): 486–496.
[14] Piegat, A. and Landowski, M. (2015). Horizontal membership function and examples of its applications, International Journal of Fuzzy Systems 17(1): 22–30.
[15] Piegat, A. and Landowski, M. (2017). Is an interval the right result of arithmetic operations on intervals?, International Journal of Applied Mathematics and Computer Science 27(3): 575–590, DOI: 10.1515/amcs-2017-0041.
[16] Piegat, A. and Landowski, M. (2018). Solving different practical granular problems under the same system of equations, Granular Computing 3(1): 39–48.
[17] Piegat, A. and Pluciński, M. (2015). Fuzzy number addition with the application of horizontal membership functions, Scientific World Journal 2015, Article ID: 367214, DOI: 10.1155/2015/367214.
[18] Piegat, A. and Pluciński, M. (2017). Fuzzy number division and the multi-granularity phenomenon, Bulletin of the Polish Academy of Sciences: Technical Sciences 65(4): 497–511.
[19] Pluciński, M. (2015). Solving Zadeh’s challenge problems with the application of RDM-arithmetic, International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, pp. 239–248.
[20] Sharghi, P., Jabbarova, K. and Aliyeva, K. (2017). RDMinterval arithmetic based decision making on port selection, Procedia Computer Science 120: 572–579.
[21] Stolphi, J. and De Figueiredo, L. (2003). An introduction to affine arithmetic, Trends in Applied and Computational Mathematics 4(3): 297–312.
[22] Sunaga, T. (2009). Theory of an interval algebra and its application to numerical analysis, Japan Journal of Industrial and Applied Mathematics 26(2–3): 125–143.
[23] Warmus, M. (1956). Calculus of approximations, Bulletin de l’Academie Polonaise de Sciences 4(5): 253–257.