Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2020_30_1_a13, author = {Trejo-S\'anchez, Joel Antonio and Fajardo-Delgado, Daniel and Gutierrez-Garcia, J. Octavio}, title = {A genetic algorithm for the maximum 2-packing set problem}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {173--184}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a13/} }
TY - JOUR AU - Trejo-Sánchez, Joel Antonio AU - Fajardo-Delgado, Daniel AU - Gutierrez-Garcia, J. Octavio TI - A genetic algorithm for the maximum 2-packing set problem JO - International Journal of Applied Mathematics and Computer Science PY - 2020 SP - 173 EP - 184 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a13/ LA - en ID - IJAMCS_2020_30_1_a13 ER -
%0 Journal Article %A Trejo-Sánchez, Joel Antonio %A Fajardo-Delgado, Daniel %A Gutierrez-Garcia, J. Octavio %T A genetic algorithm for the maximum 2-packing set problem %J International Journal of Applied Mathematics and Computer Science %D 2020 %P 173-184 %V 30 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a13/ %G en %F IJAMCS_2020_30_1_a13
Trejo-Sánchez, Joel Antonio; Fajardo-Delgado, Daniel; Gutierrez-Garcia, J. Octavio. A genetic algorithm for the maximum 2-packing set problem. International Journal of Applied Mathematics and Computer Science, Tome 30 (2020) no. 1, pp. 173-184. http://geodesic.mathdoc.fr/item/IJAMCS_2020_30_1_a13/
[1] Adacher, L. and Gemma, A. (2017). A robust algorithm to solve the signal setting problem considering different traffic assignment approaches, International Journal of Applied Mathematics and Computer Science 27(4): 815–826, DOI: 10.1515/amcs-2017-0057.
[2] Adamic, L.A. and Huberman, B.A. (2000). Power-law distribution of the world wide web, Science 287(5461): 2115–2115.
[3] Agrawal, A., Klein, P. and Ravi, R. (1995). When trees collide: An approximation algorithm for the generalized Steiner problem on networks, SIAM Journal on Computing 24(3): 440–456.
[4] Alon, U. (2007). An Introduction to Systems Biology: Design Principles of Biological Circuits, Chapman Hall/CRC, Boca Raton, FL.
[5] Amaral, L.A.N., Scala, A., Barthélémy, M. and Stanley, H.E. (2000). Classes of small-world networks, Proceedings of the National Academy of Sciences 97(21): 11149–11152.
[6] Andrade, D.V., Resende, M.G. and Werneck, R.F. (2012). Fast local search for the maximum independent set problem, Journal of Heuristics 18(4): 525–547.
[7] Back, T. and Khuri, S. (1994). An evolutionary heuristic for the maximum independent set problem, IEEE World Congress on Computational Intelligence, Orlando, FL, USA, pp. 531–535.
[8] Baran, M. (2018). Closest paths in graph drawings under an elastic metric, International Journal of Applied Mathematics and Computer Science 28(2): 387–397, DOI: 10.2478/amcs-2018-0029.
[9] Eiben, A.E. and Smith, J.E. (2015). Introduction to Evolutionary Computing, Natural Computing Series, 2nd Edn, Springer-Verlag, Berlin/Heidelberg.
[10] Feitelson, D.G. (1996). Packing schemes for gang scheduling, in D. G. Feitelson and L. Rudolph (Eds), Workshop on Job Scheduling Strategies for Parallel Processing, Springer, Berlin/Heidelberg, pp. 89–110.
[11] Flores-Lamas, A., Fernández-Zepeda, J.A. and Trejo-Sánchez, J.A. (2018). Algorithm to find a maximum 2-packing set in a cactus, Theoretical Computer Science 725: 31–51.
[12] Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M. and Gagné, C. (2012). DEAP: Evolutionary algorithms made easy, Journal of Machine Learning Research 13(7): 2171–2175.
[13] Gairing, M., Geist, R.M., Hedetniemi, S.T. and Kristiansen, P. (2004a). A self-stabilizing algorithm for maximal 2-packing, Nordic Journal of Computing 11(1): 1–11.
[14] Gairing, M., Goddard, W., Hedetniemi, S.T., Kristiansen, P. and McRae, A.A. (2004b). Distance-two information in self-stabilizing algorithms, Parallel Processing Letters 14(03n04): 387–398.
[15] Garey, M.R. and Johnson, D.S. (2002). Computers and Intractability, Vol. 29, WH Freeman New York, NY.
[16] Gregor, D. and Lumsdaine, A. (2005). The parallel BGL: A generic library for distributed graph computations, Parallel Object-Oriented Scientific Computing (POOSC), Glasgow, UK, pp. 1–18.
[17] Hale, W.K. (1980). Frequency assignment: Theory and applications, Proceedings of the IEEE 68(12): 1497–1514.
[18] Hochbaum, D.S. and Shmoys, D.B. (1985). A best possible heuristic for the k-center problem, Mathematics of Operations Research 10(2): 180–184.
[19] Holland, J.H. (1975). Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, University of Michigan Press, Ann Arbor, MI.
[20] Karp, R.M. (1972). Reducibility among combinatorial problems, in R.E. Miller et al. (Eds), Complexity of Computer Computations, Springer, Boston, MA, pp. 85–103.
[21] Knudsen, M. and Wiuf, C. (2008). A Markov chain approach to randomly grown graphs, Journal of Applied Mathematics 2008: 1–14.
[22] Lamm, S., Sanders, P., Schulz, C., Strash, D. and Werneck, R.F. (2017). Finding near-optimal independent sets at scale, Journal of Heuristics 23(4): 207–229.
[23] Manne, F. and Mjelde, M. (2006). A memory efficient self-stabilizing algorithm for maximal k-packing, in A.K. Datta and M. Gradinariu (Eds), Symposium on Self-Stabilizing Systems, Springer, Berlin/Heidelberg, pp. 428–439.
[24] Mjelde, M. (2004). k-Packing and k-Domination on Tree Graphs, Master’s thesis, University of Bergen, Bergen.
[25] Newman, M.E.J. (2002). Handbook of Graphs and Networks, Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, DOI: 10.1002/3527602755.
[26] Nogueira, B., Pinheiro, R.G. and Subramanian, A. (2018). A hybrid iterated local search heuristic for the maximum weight independent set problem, Optimization Letters 12(3): 567–583.
[27] Shi, Z. (2012). A self-stabilizing algorithm to maximal 2-packing with improved complexity, Information Processing Letters 112(13): 525–531.
[28] Soto, J.G., Leanos, J., Ríos-Castro, L. and Rivera, L. (2018). The packing number of the double vertex graph of the path graph, Discrete Applied Mathematics 247: 327–340.
[29] Trejo-Sánchez, J. A., Vela-Navarro, A., Flores-Lamas, A., López-Martínez, J.L., Bermejo-Sabbagh, C., Cuevas-Cuevas, N.L. and Toral-Cruz, H. (2018). Fast random cactus graph generation, in M. Torres et al. (Eds), International Conference on Supercomputing in Mexico, Springer, Cham, pp. 129–136.
[30] Trejo-Sánchez, J.A. and Fernández-Zepeda, J.A. (2012). A self-stabilizing algorithm for the maximal 2-packing in a cactus graph, 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops PhD Forum (IPDPSW), Shanghai, China, pp. 863–871.
[31] Trejo-Sánchez, J.A. and Fernández-Zepeda, J.A. (2014). Distributed algorithm for the maximal 2-packing in geometric outerplanar graphs, Journal of Parallel and Distributed Computing 74(3): 2193–2202.
[32] Trejo-Sánchez, J.A., Fernández-Zepeda, J.A. and Ramírez-Pacheco, J.C. (2017). A self-stabilizing algorithm for a maximal 2-packing in a cactus graph under any scheduler, International Journal of Foundations of Computer Science 28(08): 1021–1045.
[33] Turau, V. (2012). Efficient transformation of distance-2 self-stabilizing algorithms, Journal of Parallel and Distributed Computing 72(4): 603–612.