Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2019_29_4_a8, author = {Sanjuan, Adri\'an and Rotondo, Damiano and Nejjari, Fatiha and Sarrate, Ramon}, title = {An {LMI-based} heuristic algorithm for vertex reduction in {LPV} systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {725--737}, publisher = {mathdoc}, volume = {29}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a8/} }
TY - JOUR AU - Sanjuan, Adrián AU - Rotondo, Damiano AU - Nejjari, Fatiha AU - Sarrate, Ramon TI - An LMI-based heuristic algorithm for vertex reduction in LPV systems JO - International Journal of Applied Mathematics and Computer Science PY - 2019 SP - 725 EP - 737 VL - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a8/ LA - en ID - IJAMCS_2019_29_4_a8 ER -
%0 Journal Article %A Sanjuan, Adrián %A Rotondo, Damiano %A Nejjari, Fatiha %A Sarrate, Ramon %T An LMI-based heuristic algorithm for vertex reduction in LPV systems %J International Journal of Applied Mathematics and Computer Science %D 2019 %P 725-737 %V 29 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a8/ %G en %F IJAMCS_2019_29_4_a8
Sanjuan, Adrián; Rotondo, Damiano; Nejjari, Fatiha; Sarrate, Ramon. An LMI-based heuristic algorithm for vertex reduction in LPV systems. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 4, pp. 725-737. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a8/
[1] Apkarian, P., Gahinet, P. and Becker, G. (1995). Self-scheduled H∞ control of linear parameter-varying systems: A design example, Automatica 31(9): 1251–1261.
[2] Apkarian, P. and Tuan, H.D. (2000). Parameterized LMIs in control theory, SIAM Journal on Control and Optimization 38(4): 1241–1264.
[3] Boyd, S., El Ghaoui, L., Feron, E. and Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA.
[4] Chilali, M. and Gahinet, P. (1996). H∞ design with pole placement constraints: An LMI approach, IEEE Transactions on Automatic Control 41(3): 358–367.
[5] Chitraganti, S., Tóth, R., Meskin, N. and Mohammadpour, J. (2017). Stochastic model predictive tracking of piecewise constant references for LPV systems, IET Control Theory Applications 11(12): 1862–1872.
[6] Curran, P.F. (2009). On a variation of the Gershgorin circle theorem with applications to stability theory, IET Irish Signals and Systems Conference (ISSC 2009), Dublin, Ireland, pp. 1–5.
[7] El-Sakkary, A. (1985). The gap metric: Robustness of stabilization of feedback systems, IEEE Transactions on Automatic Control 30(3): 240–247.
[8] Fergani, S., Menhour, L., Sename, O., Dugard, L. and D’Andréa-Novel, B. (2017). Integrated vehicle control through the coordination of longitudinal/lateral and vertical dynamics controllers: Flatness and LPV/H∞-based design, International Journal of Robust and Nonlinear Control 27(18): 4992–5007.
[9] Fleischmann, S., Theodoulis, S., Laroche, E., Wallner, E. and Harcaut, J.-P. (2016). A systematic LPV/LFR modelling approach optimized for linearised gain scheduling control synthesis, AIAA Modeling and Simulation Technologies Conference, San Diego, CA, USA, p. 1921.
[10] Gahinet, P., Apkarian, P. and Chilali, M. (1996). Affine parameter-dependent Lyapunov functions and real parametric uncertainty, IEEE Transactions on Automatic Control 41(3): 436–442.
[11] Ho, W.K., Lee, T.H., Xu, W., Zhou, J.R. and Tay, E.B. (2000). The direct Nyquist array design of PID controllers, IEEE Transactions on Industrial Electronics 47(1): 175–185.
[12] Hoffmann, C. and Werner, H. (2015). A survey of linear parameter-varying control applications validated by experiments or high-fidelity simulations, IEEE Transactions on Control Systems Technology 23(2): 416–433.
[13] Inthamoussou, F.A., Bianchi, F.D., De Battista, H. and Mantz, R.J. (2014). LPV wind turbine control with anti-windup features covering the complete wind speed range, IEEE Transactions on Energy Conversion 29(1): 259–266.
[14] Jabali, M. B.A. and Kazemi, M.H. (2017). A new LPV modeling approach using PCA-based parameter set mapping to design a PSS, Journal of Advanced Research 8(1): 23–32.
[15] Kwiatkowski, A., Boll, M.-T. andWerner, H. (2006). Automated generation and assessment of affine LPV models, 45th IEEE Conference on Decision and Control, San Diego, CA, USA, pp. 6690–6695.
[16] Kwiatkowski, A. and Werner, H. (2008). PCA-based parameter set mappings for LPV models with fewer parameters and less overbounding, IEEE Transactions on Control Systems Technology 16(4): 781–788.
[17] Lofberg, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB, IEEE International Symposium on Computer Aided Control Systems Design, New Orleans, LA, USA, pp. 284–289.
[18] López-Estrada, F.-R., Ponsart, J.-C., Astorga-Zaragoza, C.-M., Camas-Anzueto, J.-L. and Theilliol, D. (2015). Robust sensor fault estimation for descriptor-LPV systems with unmeasurable gain scheduling functions: Application to an anaerobic bioreactor, International Journal of Applied Mathematics and Computer Science 25(2): 233–244, DOI: 10.1515/amcs-2015-0018.
[19] Luspay, T., Péni, T., Gőzse, I., Szabó, Z. and Vanek, B. (2018). Model reduction for LPV systems based on approximate modal decomposition, International Journal for Numerical Methods in Engineering 113(6): 891–909.
[20] Marcos, A. and Balas, G.J. (2004). Development of linear-parameter-varying models for aircraft, Journal of Guidance, Control, and Dynamics 27(2): 218–228.
[21] Mohammadpour, J. and Scherer, C.W. (2012). Control of Linear Parameter Varying Systems with Applications, Springer, New York, NY.
[22] Montagner, V., Oliveira, R., Leite, V.J. and Peres, P.L.D. (2005). LMI approach for H∞ linear parameter-varying state feedback control, IEE Proceedings: Control Theory and Applications 152(2): 195–201.
[23] Nguyen, A.-T., Chevrel, P. and Claveau, F. (2018). Gain-scheduled static output feedback control for saturated LPV systems with bounded parameter variations, Automatica 89: 420–424.
[24] Packard, A. (1994). Gain scheduling via linear fractional transformations, Systems Control Letters 22(2): 79–92.
[25] Pemmaraju, S. and Skiena, S. (2003). Computational Discrete Mathematics: Combinatorics and Graph Theory with Mathematica, Cambridge University Press, New York, NY.
[26] Quarteroni, A., Sacco, R. and Saleri, F. (2010). Numerical Mathematics, Vol. 37, Springer Science BusinessMedia, New York, NY.
[27] Rahideh, A. and Shaheed, M. (2007). Mathematical dynamic modelling of a twin-rotor multiple input-multiple output system, Proceedings of the Institution of Mechanical Engineers I: Journal of Systems and Control Engineering 221(1): 89–101.
[28] Rizvi, S. Z., Mohammadpour, J., Tóth, R. and Meskin, N. (2016). A kernel-based PCA approach to model reduction of linear parameter-varying systems, IEEE Transactions on Control Systems Technology 24(5): 1883–1891.
[29] Rotondo, D. (2017). Advances in Gain-Scheduling and Fault Tolerant Control Techniques, Springer, Cham.
[30] Rotondo, D., Nejjari, F. and Puig, V. (2013). Quasi-LPV modeling, identification and control of a twin rotor MIMO system, Control Engineering Practice 21(6): 829–846.
[31] Rotondo, D., Nejjari, F. and Puig, V. (2014). Robust state-feedback control of uncertain LPV systems: An LMI-based approach, Journal of the Franklin Institute 351(5): 2781–2803.
[32] Rotondo, D., Puig, V., Nejjari, F. and Romera, J. (2015a). A fault-hiding approach for the switching quasi-LPV fault-tolerant control of a four-wheeled omnidirectional mobile robot, IEEE Transactions on Industrial Electronics 62(6): 3932–3944.
[33] Rotondo, D., Puig, V., Nejjari, F. and Witczak, M. (2015b). Automated generation and comparison of Takagi–Sugeno and polytopic quasi-LPV models, Fuzzy Sets and Systems 27(C): 44–64.
[34] Rugh, W.J. and Shamma, J.S. (2000). Research on gain scheduling, Automatica 36(10): 1401–1425.
[35] Sturm, J.F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimization Methods and Software 11(1–4): 625–653.
[36] Sun, X.-D. and Postlethwaite, I. (1998). Affine LPV modelling and its use in gain-scheduled helicopter control, UKACC International Conference on Control ’98, Swansea, UK, Vol. 2, pp. 1504–1509.
[37] Theis, J., Seiler, P. and Werner, H. (2017). LPV model order reduction by parameter-varying oblique projection, IEEE Transactions on Control Systems Technology 26(3): 773–784.
[38] Theodoulis, S. and Duc, G. (2009). Missile autopilot design: Gain-scheduling and the gap metric, Journal of Guidance, Control, and Dynamics 32(3): 986–996.
[39] Tseng, C.-S., Chen, B.-S. and Uang, H.-J. (2001). Fuzzy tracking control design for nonlinear dynamic systems via TS fuzzy model, IEEE Transactions on Fuzzy Systems 9(3): 381–392.
[40] Vinnicombe, G. (1996). The robustness of feedback systems with bounded complexity controllers, IEEE Transactions on Automatic Control 41(6): 795–803.
[41] White, A.P., Zhu, G. and Choi, J. (2013). Linear Parameter-Varying Control for Engineering Applications, Springer, London.
[42] Zhao, P. and Nagamune, R. (2017). Switching LPV controller design under uncertain scheduling parameters, Automatica 76: 243–250.
[43] Zhou, M., Rodrigues, M., Shen, Y. and Theilliol, D. (2018). H /H∞ fault detection observer design for a polytopic LPV system using the relative degree, International Journal of Applied Mathematics and Computer Science 28(1): 83–95, DOI: 10.2478/amcs-2018-0006.
[44] Zribi, A., Chtourou, M. and Djemal, M. (2016). A systematic determination approach of model’s base using gap metric for nonlinear systems, Journal of Dynamic Systems, Measurement, and Control 138(3): 031008.