Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2019_29_4_a7, author = {Hendy, Ahmed S. and Mac{\'\i}as-D{\'\i}az, Jorge E.}, title = {A conservative scheme with optimal error estimates for a multidimensional space-fractional {Gross{\textendash}Pitaevskii} equation}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {713--723}, publisher = {mathdoc}, volume = {29}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a7/} }
TY - JOUR AU - Hendy, Ahmed S. AU - Macías-Díaz, Jorge E. TI - A conservative scheme with optimal error estimates for a multidimensional space-fractional Gross–Pitaevskii equation JO - International Journal of Applied Mathematics and Computer Science PY - 2019 SP - 713 EP - 723 VL - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a7/ LA - en ID - IJAMCS_2019_29_4_a7 ER -
%0 Journal Article %A Hendy, Ahmed S. %A Macías-Díaz, Jorge E. %T A conservative scheme with optimal error estimates for a multidimensional space-fractional Gross–Pitaevskii equation %J International Journal of Applied Mathematics and Computer Science %D 2019 %P 713-723 %V 29 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a7/ %G en %F IJAMCS_2019_29_4_a7
Hendy, Ahmed S.; Macías-Díaz, Jorge E. A conservative scheme with optimal error estimates for a multidimensional space-fractional Gross–Pitaevskii equation. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 4, pp. 713-723. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a7/
[1] Alikhanov, A.A. (2015). A new difference scheme for the time fractional diffusion equation, Journal of Computational Physics 280: 424–438.
[2] Alves, C.O. and Miyagaki, O.H. (2016). Existence and concentration of solution for a class of fractional elliptic equation in Rn via penalization method, Calculus of Variations and Partial Differential Equations 55(3): 47.
[3] Antoine, X., Tang, Q. and Zhang, Y. (2016). On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross–Pitaevskii equations with rotation term and nonlocal nonlinear interactions, Journal of Computational Physics 325: 74–97.
[4] Bao, W. and Cai, Y. (2013). Optimal error estimates of finite difference methods for the Gross–Pitaevskii equation with angular momentum rotation, Mathematics of Computation 82(281): 99–128.
[5] Ben-Yu, G., Pascual, P.J., Rodriguez, M.J. and Vázquez, L. (1986). Numerical solution of the sine-Gordon equation, Applied Mathematics and Computation 18(1): 1–14.
[6] Bhrawy, A.H. and Abdelkawy, M.A. (2015). A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations, Journal of Computational Physics 294: 462–483.
[7] El-Ajou, A., Arqub, O.A. and Momani, S. (2015). Approximate analytical solution of the nonlinear fractional KdV–Burgers equation: A new iterative algorithm, Journal of Computational Physics 293: 81–95.
[8] Fei, Z. and Vázquez, L. (1991). Two energy conserving numerical schemes for the sine-Gordon equation, Applied Mathematics and Computation 45(1): 17–30.
[9] Furihata, D. (2001). Finite-difference schemes for nonlinear wave equation that inherit energy conservation property, Journal of Computational and Applied Mathematics 134(1): 37–57.
[10] Glöckle, W.G. and Nonnenmacher, T.F. (1995). A fractional calculus approach to self-similar protein dynamics, Biophysical Journal 68(1): 46–53.
[11] Gross, E.P. (1961). Structure of a quantized vortex in boson systems, Il Nuovo Cimento (1955-1965) 20(3): 454–477.
[12] Iannizzotto, A., Liu, S., Perera, K. and Squassina, M. (2016). Existence results for fractional p-Laplacian problems via Morse theory, Advances in Calculus of Variations 9(2): 101–125.
[13] Kaczorek, T. (2015). Positivity and linearization of a class of nonlinear continuous-time systems by state feedbacks, International Journal of Applied Mathematics and Computer Science 25(4): 827–831, DOI: 10.1515/amcs-2015-0059.
[14] Koeller, R. (1984). Applications of fractional calculus to the theory of viscoelasticity, ASME Transactions: Journal of Applied Mechanics 51: 299–307.
[15] Liu, F., Zhuang, P., Turner, I., Anh, V. and Burrage, K. (2015). A semi-alternating direction method for a 2-D fractional FitzHugh–Nagumo monodomain model on an approximate irregular domain, Journal of Computational Physics 293: 252–263.
[16] Macías-Díaz, J.E. (2017). A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives, Journal of Computational Physics 351: 40–58.
[17] Macías-Díaz, J.E. (2018). An explicit dissipation-preserving method for Riesz space-fractional nonlinear wave equations in multiple dimensions, Communications in Nonlinear Science and Numerical Simulation 59: 67–87.
[18] Macías-Díaz, J.E. (2019). On the solution of a Riesz space-fractional nonlinear wave equation through an efficient and energy-invariant scheme, International Journal of Computer Mathematics 96(2): 337–361.
[19] Matsuo, T. and Furihata, D. (2001). Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations, Journal of Computational Physics 171(2): 425–447.
[20] Namias, V. (1980). The fractional order Fourier transform and its application to quantum mechanics, IMA Journal of Applied Mathematics 25(3): 241–265.
[21] Oprzędkiewicz, K., Gawin, E. and Mitkowski, W. (2016). Modeling heat distribution with the use of a non-integer order, state space model, International Journal of Applied Mathematics and Computer Science 26(4): 749–756, DOI: 10.1515/amcs-2016-0052.
[22] Pimenov, V.G. and Hendy, A.S. (2017). A numerical solution for a class of time fractional diffusion equations with delay, International Journal of Applied Mathematics and Computer Science 27(3): 477–488, DOI: 10.1515/amcs-2017-0033.
[23] Pimenov, V.G., Hendy, A.S. and De Staelen, R.H. (2017). On a class of non-linear delay distributed order fractional diffusion equations, Journal of Computational and Applied Mathematics 318: 433–443.
[24] Pitaevskii, L. (1961). Vortex lines in an imperfect Bose gas, Soviet Physics JETP 13(2): 451–454.
[25] Povstenko, Y. (2009). Theory of thermoelasticity based on the space-time-fractional heat conduction equation, Physica Scripta 2009(T136): 014017.
[26] Rakkiyappan, R., Cao, J. and Velmurugan, G. (2015). Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays, IEEE Transactions on Neural Networks and Learning Systems 26(1): 84–97.
[27] Raman, C., Köhl, M., Onofrio, R., Durfee, D., Kuklewicz, C., Hadzibabic, Z. and Ketterle, W. (1999). Evidence for a critical velocity in a Bose–Einstein condensed gas, Physical Review Letters 83(13): 2502.
[28] Scalas, E., Gorenflo, R. and Mainardi, F. (2000). Fractional calculus and continuous-time finance, Physica A: Statistical Mechanics and Its Applications 284(1): 376–384.
[29] Strauss, W. and Vazquez, L. (1978). Numerical solution of a nonlinear Klein–Gordon equation, Journal of Computational Physics 28(2): 271–278.
[30] Su, N., Nelson, P.N. and Connor, S. (2015). The distributed-order fractional diffusion-wave equation of groundwater flow: Theory and application to pumping and slug tests, Journal of Hydrology 529(3): 1262–1273.
[31] Tang, Y.-F., Vázquez, L., Zhang, F. and Pérez-García, V. (1996). Symplectic methods for the nonlinear Schrödinger equation, Computers Mathematics with Applications 32(5): 73–83.
[32] Tarasov, V.E. (2006). Continuous limit of discrete systems with long-range interaction, Journal of Physics A: Mathematical and General 39(48): 14895.
[33] Tarasov, V.E. and Zaslavsky, G.M. (2008). Conservation laws and HamiltonâĂŹs equations for systems with long-range interaction and memory, Communications in Nonlinear Science and Numerical Simulation 13(9): 1860–1878.
[34] Tian, W., Zhou, H. and Deng, W. (2015). A class of second order difference approximations for solving space fractional diffusion equations, Mathematics of Computation 84(294): 1703–1727.
[35] Wang, P., Huang, C. and Zhao, L. (2016). Point-wise error estimate of a conservative difference scheme for the fractional Schrödinger equation, Journal of Computational and Applied Mathematics 306: 231–247.
[36] Wang, T., Jiang, J. and Xue, X. (2018). Unconditional and optimal H1 error estimate of a Crank–Nicolson finite difference scheme for the Gross–Pitaevskii equation with an angular momentum rotation term, Journal of Mathematical Analysis and Applications 459(2): 945–958.
[37] Wang, T. and Zhao, X. (2014). Optimal l∞ error estimates of finite difference methods for the coupled Gross–Pitaevskii equations in high dimensions, Science China Mathematics 57(10): 2189–2214.
[38] Ye, H., Liu, F. and Anh, V. (2015). Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains, Journal of Computational Physics 298: 652–660.