Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2019_29_4_a4, author = {Estrada, Edgar and Yu, Wen and Li, Xiaoou}, title = {Stability and transparency of delayed bilateral teleoperation with haptic feedback}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {681--692}, publisher = {mathdoc}, volume = {29}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a4/} }
TY - JOUR AU - Estrada, Edgar AU - Yu, Wen AU - Li, Xiaoou TI - Stability and transparency of delayed bilateral teleoperation with haptic feedback JO - International Journal of Applied Mathematics and Computer Science PY - 2019 SP - 681 EP - 692 VL - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a4/ LA - en ID - IJAMCS_2019_29_4_a4 ER -
%0 Journal Article %A Estrada, Edgar %A Yu, Wen %A Li, Xiaoou %T Stability and transparency of delayed bilateral teleoperation with haptic feedback %J International Journal of Applied Mathematics and Computer Science %D 2019 %P 681-692 %V 29 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a4/ %G en %F IJAMCS_2019_29_4_a4
Estrada, Edgar; Yu, Wen; Li, Xiaoou. Stability and transparency of delayed bilateral teleoperation with haptic feedback. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 4, pp. 681-692. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a4/
[1] Anderson, R.J. and Spong, M.W. (1989). Bilateral control of teleoperators with time delay, IEEE Transactions on Automatic Control 34(5): 494–501.
[2] Balachandran, R., Artigas, J., Mehmood, U. and Ryu, J. (2016). Performance comparison of wave variable transformation and time domain passivity approaches for time-delayed teleoperation: Preliminary results, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, pp. 410–417.
[3] Chen, Z., Huang, F., Song, W. and Zhu, S. (2018). A novel wave-variable based time-delay compensated four-channel control design for multilateral teleoperation system, IEEE Access 6(5): 25506–25516.
[4] Chiaverini, S., Siciliano, B. and Villani, L. (1994). Force/position regulation of compliant robot manipulators, IEEE Transactions on Automatic Control 39(3): 647–652.
[5] Cho, H.C. and Park, J.H. (2005). Stable bilateral teleoperation under a time delay using a robust impedance control, Mechatronics 15(5): 611 – 625.
[6] Chopra, N., Spong, M.W., Hirche, S. and Buss, M. (2003). Bilateral teleoperation over the internet: The time varying delay problem, American Control Conference, Denver, CO, USA, pp. 155–160.
[7] Chopra, N., Spong, M. W. and Lozano, R. (2008). Synchronization of bilateral teleoperators with time delay, Automatica 44(8): 2142–2148.
[8] Chopra, N., Spong, M.W., Ortega, R. and Barabanov, N.E. (2006). On tracking performance in bilateral teleoperation, IEEE Transactions on Robotics 22(4): 861–866.
[9] Ehrampoosh, S., Dave, M., Kia, M.A., Rablau, C. and Zadeh, M.H. (2013). Providing haptic feedback in robot-assisted minimally invasive surgery: A direct optical force-sensing solution for haptic rendering of deformable bodies, Computer Aided Surgery 18(5–6): 129–141, DOI: 10.3109/10929088.2013.839744.
[10] Erden, M.S. and Marić, B. (2011). Assisting manual welding with robot, Robotics and Computer-Integrated Manufacturing 27(4): 818–828.
[11] Ganjefar, S., Rezaei, S. and Hashemzadeh, F. (2017). Position and force tracking in nonlinear teleoperation systems with sandwich linearity in actuators and time-varying delay, Mechanical Systems and Signal Processing 86(1): 308–324.
[12] Hogan, N. (1985). Impedance control: An approach to manipulation. Part II: Implementation, Journal of Dynamic Systems, Measurement, and Control 107(1): 8–16, DOI: 10.1115/1.3140713.
[13] Hokayem, P.F. and Spong, M.W. (2006). Bilateral teleoperation: An historical survey, Automatica 42(12): 2035–2057.
[14] Imaida, T., Yokokohji, Y., Doi, T., Oda, M. and Yoshikawa, T. (2004). Ground-space bilateral teleoperation of ETS-VII robot arm by direct bilateral coupling under 7-s time delay condition, IEEE Transactions on Robotics and Automation 20(3): 499–511.
[15] Ishii, T. and Katsura, S. (2012). Bilateral control with local force feedback for delay-free teleoperation, 12th IEEE International Workshop on Advanced Motion Control (AMC), Sarajevo, Bosnia and Herzegovina, pp. 1–6.
[16] Jafari, A., Rezaei, S., Ghidary, S.S., Zareinejad, M., Baghestan, K. and Dehghan, M. (2013). A stable perturbation estimator in force-reflecting passivity-based teleoperation, Transactions of the Institute of Measurement and Control 35(2): 147–156, DOI: 10.1177/0142331211435849.
[17] Jordan, M.A. and Bustamante, J.L. (2007). On the presence of nonlinear oscillations in the teleoperation of underwater vehicles under the influence of sea wave and current, American Control Conference, New York City, NY, USA, pp. 894–899.
[18] Kawashima, K., Tadano, K., Sankaranarayanan, G. and Hannaford, B. (2008). Model-based passivity control for bilateral teleoperation of a surgical robot with time delay, IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, pp. 1427–1432.
[19] Lawrence, D.A. (1993). Stability and transparency in bilateral teleoperation, IEEE Transactions on Robotics and Automation 9(5): 624–637.
[20] Lee, D. and Li, P.Y. (2005). Passive bilateral control and tool dynamics rendering for nonlinear mechanical teleoperators, IEEE Transactions on Robotics 21(5): 936–951.
[21] Lee, D. and Spong, M.W. (2006). Passive bilateral teleoperation with constant time delay, IEEE Transactions on Robotics 22(2): 269–281.
[22] Liu, S.,Wei, X., Zheng, W. and Yang, B. (2018). A four-channel time domain passivity approach for bilateral teleoperator, IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, China, pp. 318–322.
[23] Lozano, R., Brogliato, B., Egeland, O. and Maschke, B. (2007). Dissipative Systems Analysis and Control, Springer, London.
[24] Mobasser, F. and Hashtrudi-Zaad, K. (2008). Transparent rate mode bilateral teleoperation control, International Journal of Robotics Research 27(1): 57–72, DOI: 10.1177/0278364907083397.
[25] Munir, S. and Book, W.J. (2002). Internet-based teleoperation using wave variables with prediction, IEEE/ASME Transactions on Mechatronics 7(2): 124–133.
[26] Munir, S. and Book, W.J. (2003). Control techniques and programming issues for time delayed internet based teleoperation, Journal of Dynamic Systems, Measurement, and Control 125(2): 205–214, DOI: 10.1115/1.1568120.
[27] Niemeyer, G. and Slotine, J.E. (1998). Towards force-reflecting teleoperation over the internet, IEEE International Conference on Robotics and Automation, Leuven, Belgium, Vol. 3, pp. 1909–1915 vol.3.
[28] Niemeyer, G. and Slotine, J.J.E. (1991). Stable adaptive teleoperation, IEEE Journal of Oceanic Engineering 16(1): 152–162.
[29] Niemeyer, G. and Slotine, J.-J.E. (2004). Telemanipulation with time delays, International Journal of Robotics Research 23(9): 873–890, DOI: 10.1177/0278364904045563.
[30] Nohmi, M. (2003). Space teleoperation using force reflection of communication time delay, 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, USA, Vol. 3, pp. 2809–2814.
[31] Nuno, E. and Basanez, L. (2009). Nonlinear bilateral teleoperation: Stability analysis, IEEE International Conference on Robotics and Automation, Kobe, Japan, pp. 3718–3723.
[32] Nuno, E., Ortega, R., Barabanov, N. and Basaez, L. (2008). A globally stable pd controller for bilateral teleoperators, IEEE Transactions on Robotics 24(3): 753–758.
[33] Nuno, E., Ortega, R. and Basanez, L. (2010). An adaptive controller for nonlinear teleoperators, Automatica 46(1): 155–159.
[34] Ousaid, A.M., Haliyo, D.S., Rgnier, S. and Hayward, V. (2015). A stable and transparent microscale force feedback teleoperation system, IEEE/ASME Transactions on Mechatronics 20(5): 2593–2603.
[35] Rebelo, J. and Schiele, A. (2015). Time domain passivity controller for 4-channel time-delay bilateral teleoperation, IEEE Transactions on Haptics 8(1): 79–89.
[36] Salcudean, S.E., Zhu, M., Zhu, W.-H. and Hashtrudi-Zaad, K. (2000). Transparent bilateral teleoperation under position and rate control, International Journal of Robotics Research 19(12): 1185–1202, DOI: 10.1177/02783640022068020.
[37] Tanner, N.A. and Niemeyer, G. (2005). Improving perception in time delayed teleoperation, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 354–359.
[38] Wen, J.T. and Murphy, S. (1991). Stability analysis of position and force control for robot arms, IEEE Transactions on Automatic Control 36(3): 365–371.
[39] Xu, X., Cizmeci, B., Schuwerk, C. and Steinbach, E. (2016). Model-mediated teleoperation: Toward stable and transparent teleoperation systems, IEEE Access 4(1): 425–449.
[40] Yokokohji, Y., Imaida, T. and Yoshikawa, T. (1999). Bilateral teleoperation under time-varying communication delay, IEEE/RSJ International Conference on Intelligent Robots and Systems: Human and Environment Friendly Robots with High Intelligence and Emotional Quotients, Kyongju, South Korea, Vol. 3, pp. 1854–1859.
[41] Yokokohji, Y. and Yoshikawa, T. (1994). Bilateral control of master-slave manipulators for ideal kinesthetic coupling-formulation and experiment, IEEE Transactions on Robotics and Automation 10(5): 605–620.
[42] Zhu, M. and Salcudean, S.E. (1995). Achieving transparency for teleoperator systems under position and rate control, IEEE/RSJ International Conference on Intelligent Robots and Systems: Human Robot Interaction and Cooperative Robots, Pittsburgh, PA, USA, Vol. 2, pp. 7–12.