PI observer design for a class of nondifferentially flat systems
International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 4, pp. 655-665.

Voir la notice de l'article provenant de la source Library of Science

This paper presents a methodology and design of a model-free-based proportional-integral reduced-order observer for a class of nondifferentially flat systems. The problem is tackled from a differential algebra point of view, that is, the state observer for nondifferentially flat systems is based on algebraic differential polynomials of the output. The observation problem is treated together with that of a synchronization between a chaotic system and the designed observer. Some basic notions of differential algebra and concepts related to chaotic synchronization are introduced. The PI observer design methodology is given and it is proven that the estimation error is uniformly ultimately bounded. To exemplify the effectiveness of the PI observer, some cases and their respective numerical simulation results are presented.
Keywords: PI observer, nondifferentially flat system, algebraic observability condition, uniform ultimate boundedness
Mots-clés : obserwator proporcjonalno-całkujący, stan obserwowalności, ograniczenie ostateczne
@article{IJAMCS_2019_29_4_a2,
     author = {Flores-Flores, Juan Pablo and Martinez-Guerra, Rafael},
     title = {PI observer design for a class of nondifferentially flat systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {655--665},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a2/}
}
TY  - JOUR
AU  - Flores-Flores, Juan Pablo
AU  - Martinez-Guerra, Rafael
TI  - PI observer design for a class of nondifferentially flat systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2019
SP  - 655
EP  - 665
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a2/
LA  - en
ID  - IJAMCS_2019_29_4_a2
ER  - 
%0 Journal Article
%A Flores-Flores, Juan Pablo
%A Martinez-Guerra, Rafael
%T PI observer design for a class of nondifferentially flat systems
%J International Journal of Applied Mathematics and Computer Science
%D 2019
%P 655-665
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a2/
%G en
%F IJAMCS_2019_29_4_a2
Flores-Flores, Juan Pablo; Martinez-Guerra, Rafael. PI observer design for a class of nondifferentially flat systems. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 4, pp. 655-665. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a2/

[1] Boutayeb, M., Darouach, M. and Rafaralahy, H. (2002). Generalized state-space observers for chaotic synchronization and secure communication, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49(3): 345–349.

[2] Claude, D., Fliess, M. and Isidori, A. (1983). Immersion directe et par bouclage d’un système non linéaire dans un linéaire, Comptes Rendus Des Seances De L’Academie Des Sciences 296(I): 237–240.

[3] Corless, M. and Leitmann, G. (1981). Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems, IEEE Transactions on Automatic Control 26(5): 1139–1144.

[4] Gauthier, J.P., Hammouri, H. and Othman, S. (1992). A simple observer for nonlinear systems applications to bioreactors, IEEE Transactions on Automatic Control 37(6): 875–880.

[5] Gensior, A., Woywode, O., Rudolph, J. and Guldner, H. (2006). On differential flatness, trajectory planning, observers, and stabilization for dc-dc converters, IEEE Transactions on Circuits and Systems I: Regular Papers 53(9): 2000–2010.

[6] Karagiannis, D., Astolfi, A. and Ortega, R. (2005). Nonlinear stabilization via system immersion and manifold invariance: Survey and new results, Multiscale Modeling Simulation 3(4): 801–817.

[7] Kolchin, E.R. (1973). Differential Algebra and Algebraic Groups, Academic Press, New York City, NY.

[8] Layek, G. (2015). An Introduction to Dynamical Systems and Chaos, Springer, New York City, NY.

[9] Martínez-Guerra, R. and Cruz-Ancona, C.D. (2017). Algorithms of Estimation for Nonlinear Systems, Springer, New York City, NY.

[10] Martínez-Guerra, R., Cruz-Victoria, J., Gonzalez-Galan, R. and Aguilar-Lopez, R. (2006). A new reduced-order observer design for the synchronization of Lorenz systems, Chaos, Solitons Fractals 28(2): 511–517.

[11] Martinez-Guerra, R. and Flores-Flores, J.P. (2018). Synchronization for a class of nondifferentially flat chaotic systems by means of a PI observer, 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, pp. 1–5, paper 25.

[12] Martínez-Guerra, R., Gómez-Cortés, G. and Pérez-Pinacho, C. (2015). Synchronization of Integral and Fractional Order Chaotic Systems: A Differential Algebraic and Differential Geometric Approach with Selected Applications in Real-Time, Springer, New York City, NY.

[13] Martínez-Guerra, R., González-Galan, R., Luviano-Juárez, A. and Cruz-Victoria, J. (2007). Diagnosis for a class of non-differentially flat and Liouvillian systems, IMA Journal of Mathematical Control and Information 24(2): 177–195.

[14] Martinez-Guerra, R. and Mendoza-Camargo, J. (2004). Observers for a class of Liouvillian and non-differentially flat systems, IMA Journal of Mathematical Control and Information 21(4): 493–509.

[15] Martínez-Guerra, R. and Pérez-Pinacho, C.A. (2018). Advances in Synchronization of Coupled Fractional Order Systems: Fundamentals and Methods, Springer, New York City, NY.

[16] Nijmeijer, H. and Mareels, I.M. (1997). An observer looks at synchronization, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 44(10): 882–890.

[17] Pecora, L.M. and Carroll, T.L. (1990). Synchronization in chaotic systems, Physical Review Letters 64: 821–824.

[18] Pledgie, S.T., Hao, Y., Ferreira, A.M., Agrawal, S.K. and Murphey, R. (2002). Groups of unmanned vehicles: Differential flatness, trajectory planning, and control, IEEE International Conference on Robotics and Automation, ICRA’02, Washington, DC, USA, pp. 3461–3466.

[19] Ritt, J.F. (1950). Differential Algebra, American Mathematical Society, New York City, NY.

[20] Sira-Ramirez, H. (2002). A flatness based generalized PI control approach to liquid sloshing regulation in a moving container, American Control Conference, Anchorage, AK, USA, pp. 2909–2914.