Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2019_29_4_a2, author = {Flores-Flores, Juan Pablo and Martinez-Guerra, Rafael}, title = {PI observer design for a class of nondifferentially flat systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {655--665}, publisher = {mathdoc}, volume = {29}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a2/} }
TY - JOUR AU - Flores-Flores, Juan Pablo AU - Martinez-Guerra, Rafael TI - PI observer design for a class of nondifferentially flat systems JO - International Journal of Applied Mathematics and Computer Science PY - 2019 SP - 655 EP - 665 VL - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a2/ LA - en ID - IJAMCS_2019_29_4_a2 ER -
%0 Journal Article %A Flores-Flores, Juan Pablo %A Martinez-Guerra, Rafael %T PI observer design for a class of nondifferentially flat systems %J International Journal of Applied Mathematics and Computer Science %D 2019 %P 655-665 %V 29 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a2/ %G en %F IJAMCS_2019_29_4_a2
Flores-Flores, Juan Pablo; Martinez-Guerra, Rafael. PI observer design for a class of nondifferentially flat systems. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 4, pp. 655-665. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a2/
[1] Boutayeb, M., Darouach, M. and Rafaralahy, H. (2002). Generalized state-space observers for chaotic synchronization and secure communication, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49(3): 345–349.
[2] Claude, D., Fliess, M. and Isidori, A. (1983). Immersion directe et par bouclage d’un système non linéaire dans un linéaire, Comptes Rendus Des Seances De L’Academie Des Sciences 296(I): 237–240.
[3] Corless, M. and Leitmann, G. (1981). Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems, IEEE Transactions on Automatic Control 26(5): 1139–1144.
[4] Gauthier, J.P., Hammouri, H. and Othman, S. (1992). A simple observer for nonlinear systems applications to bioreactors, IEEE Transactions on Automatic Control 37(6): 875–880.
[5] Gensior, A., Woywode, O., Rudolph, J. and Guldner, H. (2006). On differential flatness, trajectory planning, observers, and stabilization for dc-dc converters, IEEE Transactions on Circuits and Systems I: Regular Papers 53(9): 2000–2010.
[6] Karagiannis, D., Astolfi, A. and Ortega, R. (2005). Nonlinear stabilization via system immersion and manifold invariance: Survey and new results, Multiscale Modeling Simulation 3(4): 801–817.
[7] Kolchin, E.R. (1973). Differential Algebra and Algebraic Groups, Academic Press, New York City, NY.
[8] Layek, G. (2015). An Introduction to Dynamical Systems and Chaos, Springer, New York City, NY.
[9] Martínez-Guerra, R. and Cruz-Ancona, C.D. (2017). Algorithms of Estimation for Nonlinear Systems, Springer, New York City, NY.
[10] Martínez-Guerra, R., Cruz-Victoria, J., Gonzalez-Galan, R. and Aguilar-Lopez, R. (2006). A new reduced-order observer design for the synchronization of Lorenz systems, Chaos, Solitons Fractals 28(2): 511–517.
[11] Martinez-Guerra, R. and Flores-Flores, J.P. (2018). Synchronization for a class of nondifferentially flat chaotic systems by means of a PI observer, 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, pp. 1–5, paper 25.
[12] Martínez-Guerra, R., Gómez-Cortés, G. and Pérez-Pinacho, C. (2015). Synchronization of Integral and Fractional Order Chaotic Systems: A Differential Algebraic and Differential Geometric Approach with Selected Applications in Real-Time, Springer, New York City, NY.
[13] Martínez-Guerra, R., González-Galan, R., Luviano-Juárez, A. and Cruz-Victoria, J. (2007). Diagnosis for a class of non-differentially flat and Liouvillian systems, IMA Journal of Mathematical Control and Information 24(2): 177–195.
[14] Martinez-Guerra, R. and Mendoza-Camargo, J. (2004). Observers for a class of Liouvillian and non-differentially flat systems, IMA Journal of Mathematical Control and Information 21(4): 493–509.
[15] Martínez-Guerra, R. and Pérez-Pinacho, C.A. (2018). Advances in Synchronization of Coupled Fractional Order Systems: Fundamentals and Methods, Springer, New York City, NY.
[16] Nijmeijer, H. and Mareels, I.M. (1997). An observer looks at synchronization, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 44(10): 882–890.
[17] Pecora, L.M. and Carroll, T.L. (1990). Synchronization in chaotic systems, Physical Review Letters 64: 821–824.
[18] Pledgie, S.T., Hao, Y., Ferreira, A.M., Agrawal, S.K. and Murphey, R. (2002). Groups of unmanned vehicles: Differential flatness, trajectory planning, and control, IEEE International Conference on Robotics and Automation, ICRA’02, Washington, DC, USA, pp. 3461–3466.
[19] Ritt, J.F. (1950). Differential Algebra, American Mathematical Society, New York City, NY.
[20] Sira-Ramirez, H. (2002). A flatness based generalized PI control approach to liquid sloshing regulation in a moving container, American Control Conference, Anchorage, AK, USA, pp. 2909–2914.