Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2019_29_4_a1, author = {Khaksar, Weria and Uddin, Md Zia and Torresen, Jim}, title = {Multiquery motion planning in uncertain spaces: {Incremental} adaptive randomized roadmaps}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {641--654}, publisher = {mathdoc}, volume = {29}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a1/} }
TY - JOUR AU - Khaksar, Weria AU - Uddin, Md Zia AU - Torresen, Jim TI - Multiquery motion planning in uncertain spaces: Incremental adaptive randomized roadmaps JO - International Journal of Applied Mathematics and Computer Science PY - 2019 SP - 641 EP - 654 VL - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a1/ LA - en ID - IJAMCS_2019_29_4_a1 ER -
%0 Journal Article %A Khaksar, Weria %A Uddin, Md Zia %A Torresen, Jim %T Multiquery motion planning in uncertain spaces: Incremental adaptive randomized roadmaps %J International Journal of Applied Mathematics and Computer Science %D 2019 %P 641-654 %V 29 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a1/ %G en %F IJAMCS_2019_29_4_a1
Khaksar, Weria; Uddin, Md Zia; Torresen, Jim. Multiquery motion planning in uncertain spaces: Incremental adaptive randomized roadmaps. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 4, pp. 641-654. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_4_a1/
[1] Achtelik, M.W., Weiss, S., Chli, M. and Siegwart, R. (2013). Rapidly-exploring random belief trees for motion planning under uncertainty, IEEE International Conference on Robotics and Automation, ICRA 2013, Karlsruhe, Germany, pp. 3926–3932, DOI: 10.1109/ICRA.2013.6631130.
[2] Agha-Mohammadi, A.A. and Chakravorty, S.A.N.M. (2014). FIRM: Sampling-based feedback motion-planning under motion uncertainty and imperfect measurements, International Journal of Robotics Research 33(2): 268–304, DOI: 10.1177/0278364913501564.
[3] Aoude, G.S., Luders, B.D., Joseph, J.M., Roy, N. and How, J.P. (2013). Probabilistically safe motion planning to avoid dynamic obstacles with uncertain motion patterns, Autonomous Robots 35(1): 51–76, DOI: 10.1007/s10514-013-9334-3.
[4] Axelrod, B., Kaelbling, L.P. and Lozano-Perez, T. (2018). Provably safe robot navigation with obstacle uncertainty, International Journal of Robotics Research 37(13-14): 1760–1774, DOI: 10.1177/0278364918778338.
[5] Belghith, K., Kabanza, F. and Hartman, L. (2013). Randomized path planning with preferences in highly complex dynamic environments, Robotica 31(8): 1195–1208, DOI: 10.1017/S0263574713000428.
[6] Bry, A. and Roy, N. (2011). Rapidly-exploring random belief trees for motion planning under uncertainty, IEEE International Conference on Robotics and Automation, ICRA 2011, Shanghai, China, pp. 723–730, DOI: 10.1109/ICRA.2011.5980508.
[7] Burns, B. and Brock, O. (2007). Sampling-based motion planning with sensing uncertainty, IEEE International Conference on Robotics and Automation, ICRA 2007, Rome, Italy, pp. 3313–3318, DOI: 10.1109/ROBOT.2007.363984.
[8] Canny, J. (1988). The Complexity of Robot Motion Planning, MIT Press, Cambridge, MA.
[9] Choset, H.M., Hutchinson, S., Lynch, K.M., Kantor, G., Burgard, W., Kavraki, L.E. and Thrun, S. (2005). Principles of Robot Motion: Theory, Algorithms, and Implementations, MIT Press, Cambridge, MA.
[10] Elbanhawi, M. and Simic, M. (2014). Sampling-based robot motion planning: A review, IEEE Access 2: 56–77, DOI: 10.1109/ACCESS.2014.2302442.
[11] González, D., Pérez, J., Milanés, V. and Nashashibi, F. (2016). A review of motion planning techniques for automated vehicles, IEEE Transactions on Intelligent Transportation Systems 17(4): 1135–1145, DOI: 10.1109/TITS.2015.2498841.
[12] Ha, J.S., Choi, H.L. and Jeon, J.H. (2018). Iterative methods for efficient sampling-based optimal motion planning of nonlinear systems, International Journal of Applied Mathematics and Computer Science 28(1): 155–168, DOI: 10.2478/amcs-2018-0012.
[13] Hsu, D., Kindel, R., Latombe, J.C. and Rock, S. (2002). Randomized kinodynamic motion planning with moving obstacles, International Journal of Robotics Research 21(3): 233–255, DOI: 10.1177/027836402320556421.
[14] Jafarzadeh, H. and Fleming, C.H. (2018). An exact geometry-based algorithm for path planning, International Journal of Applied Mathematics and Computer Science 28(3): 493–504, DOI: 10.2478/amcs-2018-0038.
[15] Jaillet, L., Hoffman, J., Van den Berg, J., Abbeel, P., Porta, J.M. and Goldberg, K. (2011). EG-RRT: Environment-guided random trees for kinodynamic motion planning with uncertainty and obstacles, IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2011, San Francisco, CA, USA, pp. 2646–2652, DOI: 10.1109/IROS.2011.6094802.
[16] Jaillet, L. and Simeon, T. (2004). A PRM-based motion planner for dynamically changing environments, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2004, Sendai, Japan, pp. 1606–1611, DOI: 10.1109/IROS.2004.1389625.
[17] Jaillet, L. and Siméon, T. (2008). Path deformation roadmaps: Compact graphs with useful cycles for motion planning, The International Journal of Robotics Research 27(11).
[18] Janson, L., Ichter, B. and Pavone, M. (2018). Deterministic sampling-based motion planning: Optimality, complexity, and performance, International Journal of Robotics Research 37(1): 46–61, DOI: 10.1177/0278364917714338.
[19] Karaman, S. and Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning, International Journal of Robotics Research 30(7): 846–894, DOI: 10.1177/0278364911406761.
[20] Kavraki, L.E., Svestka, P., Latombe, J.C. and Overmars, M.H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces, IEEE Transactions on Robots and Automation 12(4): 566–580, DOI: 10.1109/70.508439.
[21] Khaksar, W., Tang, S.H., Ismail, N. and Arrifin, M. (2012). A review on robot motion planning approaches, Pertanika Journal of Science Technology 20(1): 15–29.
[22] Khaksar, W., Tang, S.H., Khaksar, M. and Motlagh, O. (2013). A low dispersion probabilistic roadmaps (LD-PRM) algorithm for fast and efficient sampling-based motion planning, International Journal of Advanced Robotic Systems 10(11): 1–10, DOI: 10.5772/56973.
[23] Kingston, Z., Moll, M. and Kavraki, L.E. (2018). Sampling-based methods for motion planning with constraints, Annual Review of Control, Robotics, and Autonomous Systems 1: 159–185, DOI: 10.1146/annurev-control-060117-105226.
[24] Klaučo, M., Blažek, S. and Kvasnica, M. (2016). An optimal path planning problem for heterogeneous multi-vehicle systems, International Journal of Applied Mathematics and Computer Science 26(2): 297–308, DOI: 10.1515/amcs-2016-0021.
[25] Kurniawati, H., Bandyopadhyay, T. and Patrikalakis, N.M. (2012). Global motion planning under uncertain motion, sensing, and environment map, Autonomous Robots 33(3): 255–272, DOI: 10.1007/s10514-012-9307-y.
[26] LaValle, S.M. and Kuffner, J.J. (2001). Randomized kinodynamic planning, The International Journal of Robotics Research 25(5): 378–400, DOI: 10.1177/02783640122067453.
[27] Leven, P. and Hutchinson, S. (2011). A framework for real-time path planning in changing environments, The International Journal of Robotics Research 21(12): 999–1030, DOI: 10.1177/0278364902021012001.
[28] Li, D., Li, Q., Cheng, N. and Song, J. (2014). Sampling-based real-time motion planning under state uncertainty for autonomous micro-aerial vehicles in GPS-denied environments, Sensors 14(11): 21791–21825, DOI: 10.3390/s141121791.
[29] Liu, W. and Ang, M.H. (2014). Incremental sampling-based algorithm for risk-aware planning under motion uncertainty, IEEE International Conference on Robotics and Automation, ICRA 2014, Hong Kong, China, pp. 2051–2058, DOI: 10.1109/ICRA.2014.6907131.
[30] Luders, B.D. and How, J.P. (2014). An optimizing sampling-based motion planner with guaranteed robustness to bounded uncertainty, American Control Conference, ACC 2014, Portland, OR, USA, pp. 771–777, DOI: 10.1109/ACC.2014.6859383.
[31] Luna, R., Şucan, I.A., Moll, M. and Kavraki, L.E. (2013). Anytime solution optimization for sampling-based motion planning, IEEE International Conference on Robotics and Automation, ICRA 2013, Karlsruhe, Germany, pp. 5068–5074, DOI: 10.1109/ICRA.2013.6631301.
[32] Otte,M. and Frazzoli, E. (2016). RRTX: Asymptotically optimal single-query sampling-based motion planning with quick replanning, International Journal of Robotics Research 35(7): 797–822, DOI: 10.1177/0278364915594679.
[33] Pilania, V. and Gupta, K. (2017). Localization aware sampling and connection strategies for incremental motion planning under uncertainty, Autonomous Robots 41(1): 111–132, DOI: 10.1007/s10514-015-9536-y.
[34] Pilania, V. and Gupta, K. (2018). Mobile manipulator planning under uncertainty in unknown environments under uncertainty, International Journal of Robotics Research 37(2–3): 316–339, DOI: 10.1177/0278364918754677.
[35] Przybylski, M. and Putz, B. (2017). D* Extra Lite: A dynamic A* with searchtree cutting and frontiergap repairing, International Journal of Applied Mathematics and Computer Science 27(2): 273–290, DOI: 10.1515/amcs-2017-0020.
[36] Shan, T. and Englot, B. (2017). Belief roadmap search: Advances in optimal and efficient planning under uncertainty, IEEE International Conference on Intelligent Robots and Systems, IROS 2017, Vancouver, BC, Canada, pp. 5318–5325, DOI: 10.1109/IROS.2017.8206425.
[37] Summers, T. (2018). Distributionally robust sampling-based motion planning under uncertainty, IEEE International Conference on Intelligent Robots and Systems, IROS 2017, Vancouver, BC, Canada, pp. 6518–6523, DOI: 10.1109/IROS.2018.8593893.
[38] Sun, W., Patil, S. and Alterovitz, R. (2015). High-frequency replanning under uncertainty using parallel sampling-based motion planning, IEEE Transactions on Robotics 31(1): 104–116, DOI: 10.1109/TRO.2014.2380273.
[39] Vasquez-Gomez, J.I., Sucar, L.E. and Murrieta-Cid, R. (2017). View/state planning for three-dimensional object reconstruction under uncertainty, Autonomous Robots 41(1): 89–109, DOI: 10.1007/s10514-015-9531-3.