Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2019_29_3_a9, author = {Rodr{\'\i}guez, Carlos and Aranda-Escol\'astico, Ernesto and Guinaldo, Maria and Guzm\'an, Jos\'e Luis and Dormido, Sebasti\'an}, title = {Event-based feedforward control of linear systems with input time-delay}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {541--553}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a9/} }
TY - JOUR AU - Rodríguez, Carlos AU - Aranda-Escolástico, Ernesto AU - Guinaldo, Maria AU - Guzmán, José Luis AU - Dormido, Sebastián TI - Event-based feedforward control of linear systems with input time-delay JO - International Journal of Applied Mathematics and Computer Science PY - 2019 SP - 541 EP - 553 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a9/ LA - en ID - IJAMCS_2019_29_3_a9 ER -
%0 Journal Article %A Rodríguez, Carlos %A Aranda-Escolástico, Ernesto %A Guinaldo, Maria %A Guzmán, José Luis %A Dormido, Sebastián %T Event-based feedforward control of linear systems with input time-delay %J International Journal of Applied Mathematics and Computer Science %D 2019 %P 541-553 %V 29 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a9/ %G en %F IJAMCS_2019_29_3_a9
Rodríguez, Carlos; Aranda-Escolástico, Ernesto; Guinaldo, Maria; Guzmán, José Luis; Dormido, Sebastián. Event-based feedforward control of linear systems with input time-delay. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 3, pp. 541-553. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a9/
[1] Aranda-Escolástico, E., Guinaldo, M., Gordillo, F. and Dormido, S. (2016). A novel approach to periodic event-triggered control: Design and application to the inverted pendulum, ISA Transactions 65: 327–338.
[2] Åström, K.J. and Wittenmark, B. (1997). Computer-controlled Systems: Theory and Design, 3rd Edn., Prentice Hall, Upper Saddle River, NJ.
[3] Behera, A.K. and Bandyopadhyay, B. (2017). Robust sliding mode control: An event-triggering approach, IEEE Transactions on Circuits and Systems II: Express Briefs 64(2): 146–150.
[4] Behera, A.K., Bandyopadhyay, B. and Yu, X. (2018). Periodic event-triggered sliding mode control, Automatica 96: 61–72.
[5] Borgers, D.P. and Heemels, W.P.M.H. (2013). On minimum inter-event times in event-triggered control, 52nd IEEE Conference on Decision and Control (CDC), Florence, Italy, pp. 7370–7375.
[6] Chen, W.-H. (2004). Disturbance observer based control for nonlinear systems, IEEE/ASME Transactions on Mechatronics 9(4): 706–710.
[7] Chu, X. and Li, M. (2018). H∞ observer-based event-triggered sliding mode control for a class of discrete-time nonlinear networked systems with quantizations, ISA Transactions 79: 13–26.
[8] Dimarogonas, D.V., Frazzoli, E. and Johansson, K.H. (2012). Distributed event-triggered control for multi-agent systems, IEEE Transactions on Automatic Control 57(5): 1291–1297.
[9] Fridman, E. (2014). Introduction to time-delay and sampled-data systems, European Control Conference (ECC), Strasbourg, France, pp. 1428–1433.
[10] Gu, K., Kharitonov, V. and Chen, J. (2003). Stability of Time-Delay Systems, Springer Science Business Media, Boston, MA.
[11] Guzmán, J.L. and Hägglund, T. (2011). Simple tuning rules for feedforward compensators, Journal of Process Control 21(1): 92–102.
[12] Heemels, W.P.M.H., Donkers, M.C.F. and Teel, A.R. (2013). Periodic event-triggered control for linear systems, IEEE Transactions on Automatic Control 58(4): 847–861.
[13] Heemels, W.P.M.H., Dullerud, G.E. and Teel, A.R. (2016). L2-gain analysis for a class of hybrid systems with applications to reset and event-triggered control: A lifting approach, IEEE Transactions on Automatic Control 61(10): 2766–2781.
[14] Jiang, X. and Han, Q.L. (2006). Delay-dependent robust stability for uncertain linear systems with interval time-varying delay, Automatica 42(6): 1059–1065.
[15] Krasovskii, N.N. (1956). On the application of the second method of Lyapunov for equations with time delays, Prikladnaja Matematika i Mekhanika 20(1): 315–327.
[16] Kufner, A., Maligranda, L. and Persson, L.-E. (2007). The Hardy Inequality: About Its History and Some Related Results, Vydavatelský servis, Pilsen.
[17] Lehmann, D. and Lunze, J. (2011). Event-based output-feedback control, 19th Mediterranean Conference on Control Automation (MED), Corfu, Greece, pp. 982–987.
[18] Li, S., Yang, J., Chen, W.-H. and Chen, X. (2016). Disturbance Observer-Based Control: Methods and Applications, CRC Press, Boca Raton, FL.
[19] Lunze, J. (2015). Event-based Control and Signal Processing, CRC Press, Boca Raton, FL, pp. 3–20.
[20] Lunze, J. and Lehmann, D. (2010). A state-feedback approach to event-based control, Automatica 46(1): 211–215.
[21] Ma, D., Li, X., Sun, Q. and Xie, X. (2018). Fault tolerant synchronization of chaotic systems with time delay based on the double event-triggered sampled control, Applied Mathematics and Computation 333: 20–31.
[22] Mazo, M., Anta, A. and Tabuada, P. (2010). An ISS self-triggered implementation for linear controllers, Automatica 46(8): 1310–1314.
[23] Millán, P., Orihuela, L., Vivas, C. and Rubio, F.R. (2010). An optimal control L2-gain disturbance rejection design for networked control systems, American Control Conference (ACC), Baltimore, MD, USA, pp. 1344–1349.
[24] Miskowicz, M. (2015). Event-based Control and Signal Processing, CRC Press, Boca Raton, FL.
[25] Orihuela, L., Millán, P., Vivas, C. and Rubio, F.R. (2014). Event-based H2/H∞ controllers for networked control systems, International Journal of Control 87(12): 2488–2498.
[26] Peng, C. and Han, Q.L. (2013). A novel event-triggered transmission scheme and L2 control co-design for sampled-data control systems, IEEE Transactions on Automatic Control 58(10): 2620–2626.
[27] Qi, W., Kao, Y., Gao, X. and Wei, Y. (2018). Controller design for time-delay system with stochastic disturbance and actuator saturation via a new criterion, Applied Mathematics and Computation 320: 535–546.
[28] Tabuada, P. (2007). Event-triggered real-time scheduling of stabilizing control tasks, IEEE Transactions on Automatic Control 52(9): 1680–1685.
[29] Velasco, M., Fuertes, J. and Marti, P. (2003). The self triggered task model for real-time control systems, 24th IEEE Real-Time Systems Symposium, Cancun, Mexico, Vol. 384.
[30] Wang, X. and Lemmon, M. (2008). Event design in event-triggered feedback control systems, 47th IEEE Conference on Decision and Control (CDC), Cancun, Mexico, pp. 2105–2110.
[31] Wang, X. and Lemmon, M. (2009). Self-triggered feedback control systems with finite-gain L2 stability, IEEE Transactions on Automatic Control 45(3): 452–467.
[32] Wu, L., Gao, Y., Liu, J. and Li, H. (2017). Event-triggered sliding mode control of stochastic systems via output feedback, Automatica 82: 79–92.
[33] Yue, D., Han, Q.-L. and Lam, J. (2005). Network-based robust H∞ control of systems with uncertainty, Automatica 41(6): 999–1007.
[34] Yue, D., Tian, E. and Han, Q. (2013). A delay system method for designing event-triggered controllers of networked control systems, IEEE Transactions on Automatic Control 58(2): 475–481.
[35] Zhang, B., Lam, J. and Xu, S. (2015). Stability analysis of distributed delay neural networks based on relaxed Lyapunov–Krasovskii functionals, IEEE Transactions on Neural Networks and Learning Systems 26(7): 1480–1492.
[36] Zhang, B., Zheng, W. X. and Xu, S. (2013). Filtering of Markovian jump delay systems based on a new performance index, IEEE Transactions on Circuits and Systems I: Regular Papers 60(5): 1250–1263.