Realization of 2D (2,2)-periodic encoders by means of 2D periodic separable Roesser models
International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 3, pp. 527-539.

Voir la notice de l'article provenant de la source Library of Science

It is well known that convolutional codes are linear systems when they are defined over a finite field. A fundamental issue in the implementation of convolutional codes is to obtain a minimal state representation of the code. Compared with the literature on one-dimensional (1D) time-invariant convolutional codes, there exist relatively few results on the realization problem for time-varying 1D convolutional codes and even fewer if the convolutional codes are two-dimensional (2D). In this paper we consider 2D periodic convolutional codes and address the minimal state space realization problem for this class of codes. This is, in general, a highly nontrivial problem. Here, we focus on separable Roesser models and show that in this case it is possible to derive, under weak conditions, concrete formulas for obtaining a 2D Roesser state space representation. Moreover, we study minimality and present necessary conditions for these representations to be minimal. Our results immediately lead to constructive algorithms to build these representations.
Keywords: periodic 2D system, convolutional codes, realization problems
Mots-clés : układ dwuwymiarowy, kod splotowy, problem realizacji
@article{IJAMCS_2019_29_3_a8,
     author = {Napp, Diego and Pereira, Ricardo and Pinto, Raquel and Rocha, Paula},
     title = {Realization of {2D} (2,2)-periodic encoders by means of {2D} periodic separable {Roesser} models},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {527--539},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a8/}
}
TY  - JOUR
AU  - Napp, Diego
AU  - Pereira, Ricardo
AU  - Pinto, Raquel
AU  - Rocha, Paula
TI  - Realization of 2D (2,2)-periodic encoders by means of 2D periodic separable Roesser models
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2019
SP  - 527
EP  - 539
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a8/
LA  - en
ID  - IJAMCS_2019_29_3_a8
ER  - 
%0 Journal Article
%A Napp, Diego
%A Pereira, Ricardo
%A Pinto, Raquel
%A Rocha, Paula
%T Realization of 2D (2,2)-periodic encoders by means of 2D periodic separable Roesser models
%J International Journal of Applied Mathematics and Computer Science
%D 2019
%P 527-539
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a8/
%G en
%F IJAMCS_2019_29_3_a8
Napp, Diego; Pereira, Ricardo; Pinto, Raquel; Rocha, Paula. Realization of 2D (2,2)-periodic encoders by means of 2D periodic separable Roesser models. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 3, pp. 527-539. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a8/

[1] Aleixo, J.C. and Rocha, P. (2017). Roesser model representation of 2D periodic behaviors: The (2,2)-periodic SISO case, 10th International Workshop on Multidimensional (nD) Systems (nDS), Zielona Góra, Poland, pp. 1–6.

[2] Aleixo, J.C. and Rocha, P. (2018). On the state space realization of separable periodic 2D systems, 2018 European Control Conference, Limassol, Cyprus, pp. 2300–2305.

[3] Aleixo, J.C., Rocha, P. and Willems, J.C. (2011). State space representation of SISOperiodic behaviors, 2011 50th IEEE Conference on Decision and Control/European Control Conference, Orlando, FL, USA, pp. 1545–1550.

[4] Basu, S. and Swamy, M.N.S. (2002). Editorial preface to special issue on multidimensional signals and systems, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49(6): 709–714.

[5] Charoenlarpnopparut, C. and Bose, N. (2001). Grobner bases for problem solving in multidimensional systems, Multidimensional Systems and Signal Processing 12(3): 365–376.

[6] Climent, J.-J., Herranz, V., Perea, C. and Tomás, V. (2009). A systems theory approach to periodically time-varying convolutional codes by means of their invariant equivalent, in M. Bras-Amorós and T. Høholdt (Eds), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Springer, Berlin/Heidelberg, pp. 73–82.

[7] Costello, D.J. (1974). Free distance bounds for convolutional codes, IEEE Transactions on Information Theory 20(3): 356–365.

[8] Felstrom, A.J. and Zigangirov, K.S. (1999). Time-varying periodic convolutional codes with low-density parity-check matrix, IEEE Transactions on Information Theory 45(6): 2181–2191.

[9] Fornasini, E., Pinho, T., Pinto, R. and Rocha, P. (2015). Minimal realizations of syndrome formers of a special class of 2D codes, in R. Pinto et al. (Eds), Coding Theory and Applications, Springer International Publishing, Cham, pp. 185–193.

[10] Fornasini, E. and Pinto, R. (2004). Matrix fraction descriptions in convolutional coding, Linear Algebra and Its Applications 392(C): 119–158.

[11] Fornasini, E. and Valcher, M. (1994). Algebraic aspects of two-dimensional convolutional codes, IEEE Transactions on Information Theory 40(4): 1068–1082.

[12] Fornasini, E. and Valcher, M. (1998). Multidimensional systems with finite support behaviors: Signal structure, generation and detection, SIAM Journal on Control and Optimization 36(2): 760–779.

[13] Galkowski, K. (1996). The Fornasini–Marchesini and the Roesser models: Algebraic methods for recasting, IEEE Transactions on Automatic Control 41(1): 107–112.

[14] Galkowski, K. (2001). State-Space Realisations of Linear 2-D Systems with Extensions to the General nD (n > 2) Case, Vol. 263, Lecture Notes in Control and Information Sciences, Springer, London.

[15] Gluesing-Luersen, H., Rosenthal, J. and Weiner, P. (2000). Duality between mutidimensinal convolutional codes and systems, in F. Colonius et al. (Eds), Advances in Mathematical Systems Theory: A Volume in Honor of Diedrich Hinrichsen, Birkhauser, Boston, MA, pp. 135–150.

[16] Gluesing-Luerssen, H. and Schneider, G. (2007). State space realizations and monomial equivalence for convolutional codes, Linear Algebra and Its Applications 425(2): 518–533.

[17] Guardia, G.G.L. (2019). Asymptotically good convolutional codes, Linear and Multilinear Algebra 67(7): 1483–1494.

[18] Hinamoto, T. (1980). Realizations of a state-space model from two-dimensional input-output map, IEEE Transactions on Circuits and Systems 27(1): 36–44.

[19] Jangisarakul, P. and Charoenlarpnopparut, C. (2011). Algebraic decoder of multidimensional convolutional code: Constructive algorithms for determining syndrome decoder and decoder matrix based on Grobner basis, Multidimensional Systems and Signal Processing 22(1): 67–81.

[20] Kaczorek, T. (2001). Elimination of finite eigenvalues of the 2D Roesser model by state feedbacks, International Journal of Applied Mathematics and Computer Science 11(2): 369–376.

[21] Kailath, T. (1980). Linear Systems, Prentice-Hall, Englewood Cliffs, NJ.

[22] Kuijper, M. and Polderman, J. (2004). Reed–Solomon list decoding from a system theoretic perspective, IEEE Transactions on Information Theory IT-50(2): 259–271.

[23] Kuijper, M. and Willems, J.C. (1997). A behavioral framework for periodically time varying systems, Proceedings of the 36th IEEE Conference on Decision and Control, San Diego, CA, USA, Vol. 3, pp. 2013–2016.

[24] Lobo, R., Bitzer, D.L. and Vouk, M.A. (2012). On locally invertible encoders and multidimensional convolutional codes, IEEE Transactions on Information Theory 58(3): 1774–1782.

[25] Mooser, M. (1983). Some periodic convolutional codes better than any fixed code (corresp.), IEEE Transactions on Information Theory 29(5): 750–751.

[26] Napp, D., Perea, C. and Pinto, R. (2010). Input-state-output representations and constructions of finite support 2D convolutional codes, Advances in Mathematics of Communications 4(4): 533–545.

[27] Napp, D., Pereira, R., Pinto, R. and Rocha, P. (2019). Periodic state-space representations of periodic convolutional codes, Cryptography and Communications 11(4): 585–595.

[28] Palazzo, R. (1993). A time-varying convolutional encoder better than the best time-invariant encoder, IEEE Transactions on Information Theory 39(3): 1109–1110.

[29] Pinho, T. (2016). Minimal State-Space Realizations of 2D Convolutional Codes, PhD thesis, University of Aveiro, Aveiro.

[30] Pinho, T., Pinto, R. and Rocha, P. (2014). Realization of 2D convolutional codes of rate 1/n by separable Roesser models, Designs, Codes and Cryptography 70(1): 241–250.

[31] Rosenthal, J. (2001). Connections between linear systems and convolutional codes, in B. Marcus and J. Rosenthal (Eds), Codes, Systems and Graphical Models, Springer-Verlag, New York, NY, pp. 39–66.

[32] Rosenthal, J. and York, E.V. (1999). BCH convolutional codes, IEEE Transactions on Automatic Control 45(6): 1833–1844.

[33] Valcher, M. and Fornasini, E. (1994). On 2D finite support convolutional codes: An algebraic approach, Multidimensional Systems and Signal Processing 5(3): 231–243.

[34] Weiner, P. (1998). Multidimensional Convolutional Codes, PhD dissertation, University of Notre Dame, South Bend, IN.

[35] Zerz, E. (2000). Topics in Multidimensional Linear Systems Theory, Lecture Notes in Control and Information Sciences, Vol. 256, Springer-Verlag, London.