Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2019_29_3_a7, author = {Bartoszewicz, Andrzej and Adamiak, Katarzyna}, title = {A reference trajectory based discrete time sliding mode control strategy}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {517--525}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a7/} }
TY - JOUR AU - Bartoszewicz, Andrzej AU - Adamiak, Katarzyna TI - A reference trajectory based discrete time sliding mode control strategy JO - International Journal of Applied Mathematics and Computer Science PY - 2019 SP - 517 EP - 525 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a7/ LA - en ID - IJAMCS_2019_29_3_a7 ER -
%0 Journal Article %A Bartoszewicz, Andrzej %A Adamiak, Katarzyna %T A reference trajectory based discrete time sliding mode control strategy %J International Journal of Applied Mathematics and Computer Science %D 2019 %P 517-525 %V 29 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a7/ %G en %F IJAMCS_2019_29_3_a7
Bartoszewicz, Andrzej; Adamiak, Katarzyna. A reference trajectory based discrete time sliding mode control strategy. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 3, pp. 517-525. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a7/
[1] Bartolini, G., Ferrara, A. and Usai, E. (1998). Chattering avoidance by second order sliding mode control, IEEE Transactions on Automatic Control 43(2): 241–246.
[2] Bartolini, G., Ferrara, A., Usai, E. and Utkin, V. I. (2000). On multi-input chattering-free second-order sliding mode control, IEEE Transactions on Automatic Control 45(5): 1711–1717.
[3] Bartoszewicz, A. (1996). Remarks on ‘Discrete-time variable structure control systems’, IEEE Transactions on Industrial Electronics 43(1): 235–238.
[4] Bartoszewicz, A. (1998). Discrete-time quasi-sliding mode control strategies, IEEE Transactions on Industrial Electronics 45(4): 633–637.
[5] Bartoszewicz, A. and Leśniewski, P. (2016). New switching and nonswitching type reaching laws for SMC of discrete time systems, IEEE Transactions on Control Systems Technology 24(2): 670–677.
[6] Chakrabarty, S. and Bandyopadhyay, B. (2015). A generalized reaching law for discrete time sliding mode control, Automatica 52(1): 83–86.
[7] Chakrabarty, S. and Bandyopadhyay, B. (2016). A generalized reaching law with different convergence rates, Automatica 63(1): 34–37.
[8] Chakrabarty, S. and Bartoszewicz, A. (2016). Improved robustness and performance of discrete time sliding mode control systems, ISA Transactions on Industrial Informatics 65(1): 143–149.
[9] Chang, F.J., Twu, S.H. and Chang, S. (1990). Adaptive chattering alleviation of variable structure systems, IEE Proceedings D: Control Theory and Applications 137(1): 31–39.
[10] DeCarlo, R.A., Żak, S. and Matthews, G. (1988). Variable structure control of nonlinear multivariable systems: A tutorial, Proceedings of the IEEE 76(3): 212–232.
[11] Draženović, B. (1969). The invariance conditions in variable structure systems, Automatica 5(3): 287–295.
[12] Edwards, C. and Spurgeon, S. (1998). Sliding Mode Control: Theory and Applications, Taylor Francis, London.
[13] Emelyanov, S.V. (1957). A method to obtain complex regulation laws using only the error signal or the regulated coordinate and its first derivatives, Avtomatika i Telemekhanika 18(10): 873–885.
[14] Emelyanov, S.V. and Utkin, V.I. (1964). Stability of motion of a class of variable structure control systems, Izvestiya AN SSSR: Technical Cybernetics 2(1): 140–142.
[15] Furuta, K. (1990). Sliding mode control of a discrete system, Systems Control Letters 14(2): 145–152.
[16] Gao, W.B., Wang, Y. and Homaifa, A. (1995). Discrete-time variable structure control systems, IEEE Transactions on Industrial Electronics 42(2): 117–122.
[17] Golo, G. and Milosavljević, C. (2000). Robust discrete-time chattering free sliding mode control, Systems Control Letters 41(1): 19–28.
[18] Hung, J.Y., Gao, W.B. and Hung, J.C. (1993). Variable structure control: A survey, IEEE Transactions on Industrial Electronics 40(1): 2–22.
[19] Itkis, U. (1976). Control Systems of Variable Structure, John Wiley, New York, NY.
[20] Kotta, U., Sarpturk, S.Z. and Istefanopulos, Y. (1989). Comments on ‘On the stability of discrete-time sliding mode control systems’, IEEE Transactions on Automatic Control 34(9): 1021–1022.
[21] Latosiński, P. (2017). Reaching law based discrete time switching quasi-sliding mode controller, Proceedings of 22nd International Conference on Methods and Models in Automation and Robotics, MMAR, Międzyzdroje, Poland, pp. 414–418.
[22] Latosiński, P. and Bartoszewicz, A. (2018). Discrete time sliding mode controllers with relative degree one and two switching variables, Journal of the Franklin Institute 355(15): 6889–6903.
[23] Leśniewski, P. and Bartoszewicz, A. (2015). Inverse tangent based switching type reaching law for discrete time sliding mode control systems, Proceedings of the European Control Conference, ECC’15, Linz, Austria, pp. 2390–2395.
[24] Luis-Delgado, J.D., Al-Hadithi, B.M. and Jiménez, A. (2017). A novel method for the design of switching surfaces for discretized MIMO nonlinear systems, International Journal of Applied Mathematics and Computer Science 27(1): 5–17, DOI: 10.1515/amcs-2017-0001.
[25] Ma, H., Wu, J. and Xiong, Z. (2017). A novel exponential reaching law of discrete-time sliding-mode control, IEEE Transactions on Industrial Electronics 64(5): 2245–2251.
[26] Milosavljević, C. (1985). General conditions for the existence of a quasi-sliding mode on the switching hyperplane in discrete variable structure systems, Automation and Remote Control 46(3): 307–314.
[27] Monsees, G. and Sherpen, J.M.A. (2001). Discrete-time sliding mode control with a disturbance estimator, Proceedings of the European Control Conference, ECC 2001, Porto, Portugal, pp. 3270–3275.
[28] Niu, Y., Ho, D.W.C. and Wang, Z. (2010). Improved sliding mode control for discrete-time systems via reaching law, IET Proceedings on Control Theory Applications 4(11): 2245–2251.
[29] Qu, S., Xia, X. and Zhang, J. (2014). Dynamics of discrete-time sliding-mode-control uncertain systems with a disturbance compensator, IEEE Transactions on Industrial Electronics 61(7): 3502–3510.
[30] Ren, Y., Liu, Z., Liu, X. and Zhang, Y. (2013). A chattering free discrete-time global sliding mode controller for optoelectronic tracking system, Mathematical Problems in Engineering 2013(2): 1–8.
[31] Sabanovic, A. (2011). Variable structure systems with sliding modes in motion control—a survey, IEEE Transactions on Industrial Informatics 7(2): 212–223.
[32] Sarpturk, S.Z., Istefanopulos, Y. and Kaynak, O. (1987). On the stability of discrete-time sliding mode control systems, IEEE Transactions on Automatic Control 22(10): 930–932.
[33] Utkin, V.I. (1977). Variable structure systems with sliding modes, IEEE Transactions on Automatic Control 22(2): 212–222.
[34] Utkin, V.I. (1978). Sliding Modes and Their Applications in Variable Structure Systems, Mir Publishers, Moscow, pp. 212–222.
[35] Utkin, V.I. (1984). Variable structure systems: Present and future, Automatic Remote Control 44(9): 1105–1220.
[36] Utkin, V.I. and Drakunov, S.V. (1989). On discrete-time sliding modes, IFAC Proceedings Volumes 22(3): 273–278.
[37] Veselic, B., Perunicic-Draženović, B. and Milosavljevic, C. (2010). Improved discrete-time sliding-mode position control using Euler velocity estimation, IEEE Transactions on Industrial Informatics 57(11): 3840–3847.
[38] Vivekanandan, C., Prabhakar, R. and Gnanambigai, M. (2008). A redefined quasi-sliding mode control strategy, Proceedings of World Academy of Science 15(1): 292–295.
[39] Zhang, F. (2016). Switching reaching law based switched sliding mode control, Proceedings of the Chineese Control Conference, CCC, Chengdu, China, pp. 4735–4739.
[40] Zinober, S.I., Ei-Ghezawi, O.M.E. and Billings, S.A. (1982). Multivariable variable structure adaptive model following control systems, IEE Proceedings D: Control Theory and Applications 129(1): 6–12.