A reference trajectory based discrete time sliding mode control strategy
International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 3, pp. 517-525.

Voir la notice de l'article provenant de la source Library of Science

This study presents a new, reference trajectory based sliding mode control strategy for disturbed discrete time dynamical systems. The desired trajectory, which is generated externally according to an existing switching type reaching law, determines the properties of the emerging sliding motion of the system. It is proved that an appropriate choice of the trajectory generator parameters ensures the existence of the quasi-sliding motion of the system according to the definition by Gao et al. (1995) in spite of the influence of disturbances. Moreover, the paper shows that the application of the desired trajectory based reaching law results in a significant reduction in the quasi-sliding mode band width and errors of all state variables. Therefore, in comparison with Gao’s control method, the system’s robustness is increased. The paper also presents an additional modification of the reaching law, which guarantees a further reduction in the quasi-sliding mode band in the case of slowly varying disturbances. The results are confirmed with a simulation example.
Keywords: discrete time system, sliding mode control, reaching law, reference trajectory
Mots-clés : układ dyskretno czasowy, sterowanie ślizgowe, trajektoria referencyjna
@article{IJAMCS_2019_29_3_a7,
     author = {Bartoszewicz, Andrzej and Adamiak, Katarzyna},
     title = {A reference trajectory based discrete time sliding mode control strategy},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {517--525},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a7/}
}
TY  - JOUR
AU  - Bartoszewicz, Andrzej
AU  - Adamiak, Katarzyna
TI  - A reference trajectory based discrete time sliding mode control strategy
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2019
SP  - 517
EP  - 525
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a7/
LA  - en
ID  - IJAMCS_2019_29_3_a7
ER  - 
%0 Journal Article
%A Bartoszewicz, Andrzej
%A Adamiak, Katarzyna
%T A reference trajectory based discrete time sliding mode control strategy
%J International Journal of Applied Mathematics and Computer Science
%D 2019
%P 517-525
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a7/
%G en
%F IJAMCS_2019_29_3_a7
Bartoszewicz, Andrzej; Adamiak, Katarzyna. A reference trajectory based discrete time sliding mode control strategy. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 3, pp. 517-525. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a7/

[1] Bartolini, G., Ferrara, A. and Usai, E. (1998). Chattering avoidance by second order sliding mode control, IEEE Transactions on Automatic Control 43(2): 241–246.

[2] Bartolini, G., Ferrara, A., Usai, E. and Utkin, V. I. (2000). On multi-input chattering-free second-order sliding mode control, IEEE Transactions on Automatic Control 45(5): 1711–1717.

[3] Bartoszewicz, A. (1996). Remarks on ‘Discrete-time variable structure control systems’, IEEE Transactions on Industrial Electronics 43(1): 235–238.

[4] Bartoszewicz, A. (1998). Discrete-time quasi-sliding mode control strategies, IEEE Transactions on Industrial Electronics 45(4): 633–637.

[5] Bartoszewicz, A. and Leśniewski, P. (2016). New switching and nonswitching type reaching laws for SMC of discrete time systems, IEEE Transactions on Control Systems Technology 24(2): 670–677.

[6] Chakrabarty, S. and Bandyopadhyay, B. (2015). A generalized reaching law for discrete time sliding mode control, Automatica 52(1): 83–86.

[7] Chakrabarty, S. and Bandyopadhyay, B. (2016). A generalized reaching law with different convergence rates, Automatica 63(1): 34–37.

[8] Chakrabarty, S. and Bartoszewicz, A. (2016). Improved robustness and performance of discrete time sliding mode control systems, ISA Transactions on Industrial Informatics 65(1): 143–149.

[9] Chang, F.J., Twu, S.H. and Chang, S. (1990). Adaptive chattering alleviation of variable structure systems, IEE Proceedings D: Control Theory and Applications 137(1): 31–39.

[10] DeCarlo, R.A., Żak, S. and Matthews, G. (1988). Variable structure control of nonlinear multivariable systems: A tutorial, Proceedings of the IEEE 76(3): 212–232.

[11] Draženović, B. (1969). The invariance conditions in variable structure systems, Automatica 5(3): 287–295.

[12] Edwards, C. and Spurgeon, S. (1998). Sliding Mode Control: Theory and Applications, Taylor Francis, London.

[13] Emelyanov, S.V. (1957). A method to obtain complex regulation laws using only the error signal or the regulated coordinate and its first derivatives, Avtomatika i Telemekhanika 18(10): 873–885.

[14] Emelyanov, S.V. and Utkin, V.I. (1964). Stability of motion of a class of variable structure control systems, Izvestiya AN SSSR: Technical Cybernetics 2(1): 140–142.

[15] Furuta, K. (1990). Sliding mode control of a discrete system, Systems Control Letters 14(2): 145–152.

[16] Gao, W.B., Wang, Y. and Homaifa, A. (1995). Discrete-time variable structure control systems, IEEE Transactions on Industrial Electronics 42(2): 117–122.

[17] Golo, G. and Milosavljević, C. (2000). Robust discrete-time chattering free sliding mode control, Systems Control Letters 41(1): 19–28.

[18] Hung, J.Y., Gao, W.B. and Hung, J.C. (1993). Variable structure control: A survey, IEEE Transactions on Industrial Electronics 40(1): 2–22.

[19] Itkis, U. (1976). Control Systems of Variable Structure, John Wiley, New York, NY.

[20] Kotta, U., Sarpturk, S.Z. and Istefanopulos, Y. (1989). Comments on ‘On the stability of discrete-time sliding mode control systems’, IEEE Transactions on Automatic Control 34(9): 1021–1022.

[21] Latosiński, P. (2017). Reaching law based discrete time switching quasi-sliding mode controller, Proceedings of 22nd International Conference on Methods and Models in Automation and Robotics, MMAR, Międzyzdroje, Poland, pp. 414–418.

[22] Latosiński, P. and Bartoszewicz, A. (2018). Discrete time sliding mode controllers with relative degree one and two switching variables, Journal of the Franklin Institute 355(15): 6889–6903.

[23] Leśniewski, P. and Bartoszewicz, A. (2015). Inverse tangent based switching type reaching law for discrete time sliding mode control systems, Proceedings of the European Control Conference, ECC’15, Linz, Austria, pp. 2390–2395.

[24] Luis-Delgado, J.D., Al-Hadithi, B.M. and Jiménez, A. (2017). A novel method for the design of switching surfaces for discretized MIMO nonlinear systems, International Journal of Applied Mathematics and Computer Science 27(1): 5–17, DOI: 10.1515/amcs-2017-0001.

[25] Ma, H., Wu, J. and Xiong, Z. (2017). A novel exponential reaching law of discrete-time sliding-mode control, IEEE Transactions on Industrial Electronics 64(5): 2245–2251.

[26] Milosavljević, C. (1985). General conditions for the existence of a quasi-sliding mode on the switching hyperplane in discrete variable structure systems, Automation and Remote Control 46(3): 307–314.

[27] Monsees, G. and Sherpen, J.M.A. (2001). Discrete-time sliding mode control with a disturbance estimator, Proceedings of the European Control Conference, ECC 2001, Porto, Portugal, pp. 3270–3275.

[28] Niu, Y., Ho, D.W.C. and Wang, Z. (2010). Improved sliding mode control for discrete-time systems via reaching law, IET Proceedings on Control Theory Applications 4(11): 2245–2251.

[29] Qu, S., Xia, X. and Zhang, J. (2014). Dynamics of discrete-time sliding-mode-control uncertain systems with a disturbance compensator, IEEE Transactions on Industrial Electronics 61(7): 3502–3510.

[30] Ren, Y., Liu, Z., Liu, X. and Zhang, Y. (2013). A chattering free discrete-time global sliding mode controller for optoelectronic tracking system, Mathematical Problems in Engineering 2013(2): 1–8.

[31] Sabanovic, A. (2011). Variable structure systems with sliding modes in motion control—a survey, IEEE Transactions on Industrial Informatics 7(2): 212–223.

[32] Sarpturk, S.Z., Istefanopulos, Y. and Kaynak, O. (1987). On the stability of discrete-time sliding mode control systems, IEEE Transactions on Automatic Control 22(10): 930–932.

[33] Utkin, V.I. (1977). Variable structure systems with sliding modes, IEEE Transactions on Automatic Control 22(2): 212–222.

[34] Utkin, V.I. (1978). Sliding Modes and Their Applications in Variable Structure Systems, Mir Publishers, Moscow, pp. 212–222.

[35] Utkin, V.I. (1984). Variable structure systems: Present and future, Automatic Remote Control 44(9): 1105–1220.

[36] Utkin, V.I. and Drakunov, S.V. (1989). On discrete-time sliding modes, IFAC Proceedings Volumes 22(3): 273–278.

[37] Veselic, B., Perunicic-Draženović, B. and Milosavljevic, C. (2010). Improved discrete-time sliding-mode position control using Euler velocity estimation, IEEE Transactions on Industrial Informatics 57(11): 3840–3847.

[38] Vivekanandan, C., Prabhakar, R. and Gnanambigai, M. (2008). A redefined quasi-sliding mode control strategy, Proceedings of World Academy of Science 15(1): 292–295.

[39] Zhang, F. (2016). Switching reaching law based switched sliding mode control, Proceedings of the Chineese Control Conference, CCC, Chengdu, China, pp. 4735–4739.

[40] Zinober, S.I., Ei-Ghezawi, O.M.E. and Billings, S.A. (1982). Multivariable variable structure adaptive model following control systems, IEE Proceedings D: Control Theory and Applications 129(1): 6–12.