Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2019_29_3_a13, author = {Rutkowski, Tomasz and {\L}apa, Krystian and Nielek, Rados{\l}aw}, title = {On explainable fuzzy recommenders and their performance evaluation}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {595--610}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a13/} }
TY - JOUR AU - Rutkowski, Tomasz AU - Łapa, Krystian AU - Nielek, Radosław TI - On explainable fuzzy recommenders and their performance evaluation JO - International Journal of Applied Mathematics and Computer Science PY - 2019 SP - 595 EP - 610 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a13/ LA - en ID - IJAMCS_2019_29_3_a13 ER -
%0 Journal Article %A Rutkowski, Tomasz %A Łapa, Krystian %A Nielek, Radosław %T On explainable fuzzy recommenders and their performance evaluation %J International Journal of Applied Mathematics and Computer Science %D 2019 %P 595-610 %V 29 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a13/ %G en %F IJAMCS_2019_29_3_a13
Rutkowski, Tomasz; Łapa, Krystian; Nielek, Radosław. On explainable fuzzy recommenders and their performance evaluation. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 3, pp. 595-610. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a13/
[1] Alvarez-Estevez, D., Moret-Bonillo, V. (2018). Revisiting the Wang–Mendel algorithm for fuzzy classification, Expert Systems 35(4): 35:312268.
[2] Bologna, G. and Hayashi, Y. (2017). Characterization of symbolic rules embedded in deep DIMLP networks: A challenge to transparency of deep learning, Journal of Artificial Intelligence and Soft Computing Research 7(4): 265–286.
[3] Cpalka, K. (2017). Design of Interpretable Fuzzy Systems, Studies in Computational Intelligence 684, Springer Verlag, Cham.
[4] Harper, F.M. and Konstan, J.A. (2015). The MovieLens datasets: History and context, ACM Transactions on Interactive Intelligent Systems 5(4):19:1–19:19.
[5] Ishibuchi H. and T. Nakashima (2001). Effect of rule weights in fuzzy rule-based classification systems, IEEE Transactions on Fuzzy Systems 9(4): 506–515.
[6] Ishibuchi H. and T. Yamamoto (2005). Rule weight specification in fuzzy rule-based classification systems, IEEE Transactions on Fuzzy Systems 13(4): 428–435.
[7] Jin, Y. (2000). Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement, IEEE Transactions on Fuzzy Systems 8(2): 212–221.
[8] Kuncheva, L. (2000). Fuzzy Classifier Design, Studies in Fuzziness and Soft Computing, Vol. 49, Springer Verlag, New York, NY.
[9] Liu, H., Gegov, A. and Cocea, M. (2017). Rule based networks: An efficient and interpretable representation of computational models, Journal of Artificial Intelligence and Soft Computing Research 7(2): 111–123.
[10] Lops, P., Gemmis, M. and Semeraro, G. (2011). Content-based recommender systems: State of the art and trends, in F. Ricci et al. (Eds), Recommender Systems Handbook, Springer, New York, NY, pp.73–105.
[11] Nauck, D. and R. Kruse (1998). How the learning of rule weights affects the interpretability of fuzzy systems, IEEE International Conference on Fuzzy Systems 1998 (FUZZ-IEEE’98), Ancorage, AK, USA, pp.1235–1240.
[12] Portugal, I., Paulo S.C. Alencar and Cowan, D.D. (2018). The use of machine learning algorithms in recommender systems: A systematic review, Expert System Applications 97: 205–227.
[13] Prasad, M., Liu, Y.-T., Li, D.-L., Lin, C.-T., Shah, R.R. and Kaiwartya, O.P. (2017). A new mechanism for data visualization with TSK-type preprocessed collaborative fuzzy rule based system, Journal of Artificial Intelligence and Soft Computing Research 7(1): 33–46.
[14] Riid, A. and Preden, J.-S. (2017). Design of fuzzy rule-based classifiers through granulation and consolidation, Journal of Artificial Intelligence and Soft Computing Research 7(2): 137–147.
[15] Rutkowska, D. (2002). Neuro-Fuzzy Architectures and Hybrid Learning, Studies in Fuzziness and Soft Computing, Springer Verlag, New York, NY.
[16] Rutkowski, L. (2004). Flexible Neuro-Fuzzy Systems: Structures, Learning and Performance Evaluation, Kluwer Academic Publishers, Boston, MA/Dordrecht/London.
[17] Rutkowski, L. (2008). Computational Intelligence: Methods and Techniques, Springer, Berlin.
[18] Rutkowski, T., Romanowski, J., Woldan, P., Staszewski, P. and Nielek, R. (2018). Towards interpretability of the movie recommender based on a neuro-fuzzy approach, 17th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2018, Zakopane, Poland, pp. 752–762.
[19] Rutkowski, T., Romanowski, J., Woldan, P., Staszewski, P., Nielek, R. and Rutkowski, L. (2018). A content-based recommendation system using neuro-fuzzy approach, 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2018), Piscataway, NJ, USA, pp. 1–8, DOI:10.1109/FUZZ-IEEE.2018.8491543.
[20] Simiński, K. (2010). Rule weights in a neuro-fuzzy system with a hierarchical domain partition, International Journal of Applied Mathematics and Computer Science 20(2): 337–347, DOI: 10.2478/v10006-010-0025-3.
[21] Söderström, T. and Stoica, P. (1989). System Identification, Prentice Hall International, Upper Saddle River, NJ.
[22] Wang, L.-X. and Mendel J.M. (1992). Generating fuzzy rules by learning from examples, IEEE Transactions on Systems, Man, and Cybernetics: Systems 22(6): 1414–1427.
[23] Wei, J., He, J., Chen, K., Zhou, Y. and Tang, Z. (2017). Collaborative filtering and deep learning based recommendation system for cold start items, Expert Systems with Applications 69: 29–39.
[24] Zhang, S., Yao L., Sun A. and Y. Tay (2018). Deep learning based recommender system: A survey and new perspectives, ACM Computing Surveys 52(1), Article No. 5.