Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2019_29_3_a11, author = {Janczak, Andrzej and Korbicz, J\'ozef}, title = {Two-stage instrumental variables identification of polynomial {Wiener} systems with invertible nonlinearities}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {571--580}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a11/} }
TY - JOUR AU - Janczak, Andrzej AU - Korbicz, Józef TI - Two-stage instrumental variables identification of polynomial Wiener systems with invertible nonlinearities JO - International Journal of Applied Mathematics and Computer Science PY - 2019 SP - 571 EP - 580 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a11/ LA - en ID - IJAMCS_2019_29_3_a11 ER -
%0 Journal Article %A Janczak, Andrzej %A Korbicz, Józef %T Two-stage instrumental variables identification of polynomial Wiener systems with invertible nonlinearities %J International Journal of Applied Mathematics and Computer Science %D 2019 %P 571-580 %V 29 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a11/ %G en %F IJAMCS_2019_29_3_a11
Janczak, Andrzej; Korbicz, Józef. Two-stage instrumental variables identification of polynomial Wiener systems with invertible nonlinearities. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 3, pp. 571-580. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a11/
[1] Al-Duwaish, H., Karim, M. and Chandrasekar, V. (1996). Use of multilayer feedforward neural networks in identification and control of Wiener model, IEE Proceedings: Control Theory and Applications 143(3): 255–258, DOI: 10.1049/ip-cta:19960376.
[2] Aljamaan, I., Westwick, D., Foley, M. and Chandrasekar, V. (2016). Identification of Wiener models in the presence of ARIMA process noise, IFAC-PapersOnLine 49(7): 1008–1013, DOI: 10.1016/j.ifacol.2016.07.334.
[3] Ase, H. and Katayama, T. (2015). A subspace-based identification of two-channel Wiener systems, IFAC-PapersOnLine 48(28): 638–643, DOI: 10.1016/j.ifacol.2015.12.201.
[4] Billings, S. and Fakhouri, S. (1978). Theory of separable processes with applications to the identification of nonlinear systems, Proceedings of the Institution of Electrical Engineers 125(10): 1051–1058, DOI: 10.1049/piee.1978.0241.
[5] Billings, S. and Fakhouri, S. (1982). Identification of systems containing linear dynamic and static nonlinear elements, Automatica 18(1): 15–26, DOI: 0.1016/0005-1098(82)90022-X.
[6] Bottegal, G., Castro-Garcia, R. and Suykens, J. (2017). On the identification of Wiener systems with polynomial nonlinearity, 2017 IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, Australia, DOI: 10.1109/CDC.2017.8264635.
[7] Boyd, S. and Chua, L.O. (1985). Fading memory and the problem of approximating nonlinear operators with Volterra series, IEEE Transactions on Circuits and Systems 32(11): 1150–1161, DOI: 10.1109/TCS.1985.1085649.
[8] Brouri, A. and Slassi, S. (2015). Frequency identification approach for Wiener systems, International Journal of Computational Engineering Research (IJCER) 5(8): 12–16.
[9] Ding, F., Liu, X. and Liu, M. (2015). The recursive least squares identification algorithm for a class of Wiener nonlinear systems, Journal of the Franklin Institute 353(7): 1518–1526, DOI: 10.1016/j.jfranklin.2016.02.013.
[10] Dong, R., Tan, Q. and Tan, Y. (2009). Recursive identification algorithm for dynamic systems with output backlash and its convergence, International Journal of Applied Mathematics and Computer Science 19(4): 631–638, DOI: 10.2478/v10006-009-0050-2.
[11] Fan, D. and Lo, K. (2009). Identification for disturbed MIMO Wiener systems, Nonlinear Dynamics 55(1): 31–42, DOI: 10.1007/s11071-008-9342-6.
[12] Figueroa, J., Biagiola, S., Alvarez, M., Castro, L. and Agamennoni, O.E. (2013). Robust model predictive control of a Wiener-like system, Journal of the Franklin Institute 350(3): 556–574, DOI: 10.1016/j.jfranklin.2012.12.016.
[13] Giri, F., Radouane, A., Brouri, A. and Chaoui, F. (2014). Combined frequency-prediction error identification approach for Wiener systems with backlash and backlash-inverse operators, Automatica 50(3): 768–783, DOI: 10.1016/j.automatica.2013.12.030.
[14] Gómez, M. and Baeyens, E. (2002). Subspace identification of multivariable Hammerstein and Wiener models, IFAC Proceedings Volumes 35(1): 55–60, DOI: 10.3182/20020721-6-ES-1901.00420.
[15] Gómez, M. and Baeyens, E. (2005). Subspace-based identification algorithms for Hammerstein and Wiener models, European Journal of Control 11(2): 127–136, DOI: 10.3166/ejc.11.127-136.
[16] Greblicki, W. (1997). Nonparametric approach to Wiener system identification, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 44(6): 538–545, DOI: 10.1109/81.586027.
[17] Greblicki, W. (2001). Recursive identification of Wiener systems, International Journal of Applied Mathematics and Computer Science 11(4): 977–991.
[18] Ipanaqué, W. and Manrique, J. (2011). Identification and control of pH using optimal piecewise linear Wiener model, IFAC Proceedings Volumes 44(41): 12301–12306, DOI: 10.3182/20110828-6-IT-1002.03695.
[19] Janczak, A. (2005). Identification of Nonlinear Systems Using Neural Networks and Polynomial Models. A Block-Oriented Approach, Springer Verlag, Berlin/Heidelberg/New York, NY.
[20] Janczak, A. (2007). Instrumental variables approach to identification of a class of MIMO Wiener systems, Nonlinear Dynamics 48(3): 275–284, DOI: 10.1007/s11071-006-9088-y.
[21] Janczak, A. (2018). Least squares and instrumental variables identification of polynomial Wiener systems, 23rd International Conference on Methods and Models in Automation and Robotics (MMAR’2018), Międzyzdroje, Poland, DOI: 10.1109/MMAR.2018.8486049.
[22] Jansson, D. and Medvedev, A. (2015). Identification of polynomial Wiener systems via Volterra–Laguerre series with model mismatch, IFAC-PapersOnLine 48(11): 831–836, DOI: 10.1016/j.ifacol.2015.09.293.
[23] Kazemi, M. and Arefi, M. (2017). A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems, ISA Transactions 67: 382–388, DOI: 10.1016/j.isatra.2016.12.002.
[24] Kim, K.-K., Rios-Patronc, E. and Braatz, R. (2012). Robust nonlinear internal model control of stable Wiener systems, Journal of Process Control 22(8): 1468–1477, DOI: 10.1016/j.jprocont.2012.01.019.
[25] Ławryńczuk, M. (2013). Practical nonlinear predictive control algorithms for neural Wiener models, Journal of Process Control 22(5): 696–714, DOI: 10.1016/j.jprocont.2013.02.004.
[26] Ławryńczuk, M. (2015). Nonlinear state-space predictive control with on-line linerisation and state estimation, International Journal of Applied Mathematics and Computer Science 25(4): 833–847, DOI: 10.1515/amcs-2015-0060.
[27] Ławryńczuk, M. (2016). Modelling and predictive control of a neutralisation reactor using sparse support vector machine Wiener models, Neurocomputing 205: 311–328, DOI: 10.1016/j.neucom.2016.03.066.
[28] Mahataa, K., Schoukens, J. and Cock, A.D. (2016). Information matrix and D-optimal design with Gaussian inputs for Wiener model identification, Automatica 69: 65–77, DOI: 10.1016/j.automatica.2016.02.026.
[29] Rollins, D., Mei, Y., Loveland, S. and Bhandari, N. (2016). Block-oriented feedforward control with demonstration to nonlinear parameterized Wiener modeling, Chemical Engineering Research and Design 109: 397–404, DOI: 10.1016/j.cherd.2016.02.016.
[30] Schoukens, M. and Tiels, K. (2011). Parametric MIMO parallel Wiener identification, 2011 50th IEEE Conference on Decision and Control/European Control Conference, Orlando, FL, USA, DOI: 10.1109/CDC.2011.6160230.
[31] Schoukens, M. and Tiels, K. (2017). Identification of block-oriented nonlinear systems starting from linear approximations: A survey, Automatica 85: 272–292, DOI: 10.1016/j.automatica.2017.06.044.
[32] Stanisławski, R., Latawiec, K., Gałek, M. and Łukaniszyn, M. (2014). Modeling and identification of a fractional-order discrete-time SISO Laguerre–Wiener system, 19th International Conference on Methods and Models in Automation and Robotics (MMAR’2014), Międzyzdroje, Poland, DOI: 10.1109/MMAR.2014.6957343.
[33] Tiels, K. and Schoukens, J. (2014). Wiener system identification with generalized orthonormal basis functions, Automatica 50(12): 3147–3154, DOI: 10.1016/j.automatica.2014.10.010.
[34] Van Vaerenbergh, S., Via, J. and Santamaria, I. (2013). Blind identification of SIMO Wiener systems based on kernel canonical correlation analysis, IEEE Transactions on Signal Processing 61(9): 2219–2230, DOI: 10.1109/TSP.2013.2248004.
[35] Vörös, J. (2007). Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities, Systems Control Letters 56(2): 99–105, DOI: 10.1016/j.sysconle.2006.08.001.
[36] Vörös, J. (2015). Identification of nonlinear cascade systems with output hysteresis based on the key term separation principle, Applied Mathematical Modelling 39(18): 5531–5539, DOI: 10.1016/j.apm.2015.01.018.
[37] Westwick, D. and Verhaegen, M. (1996). Identifying MIMO Wiener systems using subspace model identification methods, Systems Control Letters 52(2): 235–258, DOI: 10.1016/0165-1684(96)00056-4.
[38] Wigren, T. (1993). Recursive prediction error identification algorithm using the nonlinear Wiener model, Automatica 29(4): 1011–1025, DOI: 10.1016/0005-1098(93)90103-Z.
[39] Xiong, W., Yang, X., Ke, L. and Xu, B. (2015). EM algorithm-based identification of a class of nonlinear Wiener systems with missing output data, Nonlinear Dynamics 80(1–2): 329–339, DOI: 10.1007/s11071-014-1871-6.
[40] Yang, X., Xiong, W., Ma, J. and Wang, Z. (2017). Robust identification of Wiener time-delay system with expectation-maximization algorithm, Journal of the Franklin Institute 354(13): 5678–5693, DOI: 10.1016/j.jfranklin.2017.05.023.
[41] Zhou, L., Li, X. and Pan, F. (2013). Gradient based iterative parameter identification for Wiener nonlinear systems, Applied Mathematical Modelling 37(16–17): 8203–8209, DOI: 10.1016/j.apm.2013.03.005.