Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2019_29_3_a10, author = {Ettouil, Radhia and Chabir, Karim and Sauter, Dominique and Abdelkrim, Mohamed Naceur}, title = {Synergetic control for {HVAC} system control and {VAV} box fault compensation}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {555--570}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a10/} }
TY - JOUR AU - Ettouil, Radhia AU - Chabir, Karim AU - Sauter, Dominique AU - Abdelkrim, Mohamed Naceur TI - Synergetic control for HVAC system control and VAV box fault compensation JO - International Journal of Applied Mathematics and Computer Science PY - 2019 SP - 555 EP - 570 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a10/ LA - en ID - IJAMCS_2019_29_3_a10 ER -
%0 Journal Article %A Ettouil, Radhia %A Chabir, Karim %A Sauter, Dominique %A Abdelkrim, Mohamed Naceur %T Synergetic control for HVAC system control and VAV box fault compensation %J International Journal of Applied Mathematics and Computer Science %D 2019 %P 555-570 %V 29 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a10/ %G en %F IJAMCS_2019_29_3_a10
Ettouil, Radhia; Chabir, Karim; Sauter, Dominique; Abdelkrim, Mohamed Naceur. Synergetic control for HVAC system control and VAV box fault compensation. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 3, pp. 555-570. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a10/
[1] Afram, A. and Janabi-Sharifi, F. (2014). Theory and applications of HVAC control systems—A review of model predictive control (MPC), Building and Environment 72: 343–355.
[2] Afram, A. and Janabi-Sharifi, F. (2017). Supervisory model predictive controller (MPC) for residential HVAC systems: Implementation and experimentation on archetype sustainable house in Toronto, Energy and Buildings 154: 268–282.
[3] Aftab, M., Chen, C., Chau, C.-K. and Rahwan, T. (2017). Automatic HVAC control with real-time occupancy recognition and simulation-guided model predictive control in low-cost embedded system, Energy and Buildings 154: 141–156.
[4] Bai, J. and Zhang, X. (2007). A new adaptive (PI) controller and its application in (HVAC) systems, Energy Conversion and Management 48(4): 1043–1054.
[5] Bengea, S.C., Li, P., Sarkar, S., Vichik, S., Adetola, V., Kang, K., Lovett, T., Leonardi, F. and Kelman, A.D. (2015). Fault-tolerant optimal control of a building (HVAC) system, Science and Technology for the Built Environment 21(6): 734–751.
[6] Bouchama, Z., Essounbouli, N., Harmas, M., Hamzaoui, A. and Saoudi, K. (2016). Reaching phase free adaptive fuzzy synergetic power system stabilizer, International Journal of Electrical Power Energy Systems 77: 43–49.
[7] Chabir, K., Sauter, D., Gayed, M.K.B. and Abdelkrim, M.N. (2008). Design of an adaptive Kalman filter for fault detection of networked control systems, 16th Mediterranean Conference on Control and Automation (MED), Ajaccio, France, pp. 1124–1129.
[8] Chabir, K., Sid, M.A. and Sauter, D. (2014). Fault diagnosis in a networked control system under communication constraints: A quadrotor application, International Journal of Applied Mathematics and Computer Science 24(4): 809–820, DOI: 10.2478/amcs-2014-0060.
[9] Chen, J. and Patton, R.J. (2012). Robust Model-based Fault Diagnosis for Dynamic Systems, Springer Science Business Media, Norwell, MA.
[10] Chinde, V., Kosaraju, K., Kelkar, A., Pasumarthy, R., Sarkar, S. and Singh, N. (2017). A passivity-based power-shaping control of building HVAC systems, Journal of Dynamic Systems, Measurement, and Control 139(11): 111007.
[11] Darure, T., Yamé, J.-J. and Hamelin, F. (2016). Model-based fault-tolerant control of VAV damper lock-in place failure in a multizone building, 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), Phuket, Tailand, pp. 1–6.
[12] Du, Z., Fan, B., Chi, J. and Jin, X. (2014). Sensor fault detection and its efficiency analysis in air handling unit using the combined neural networks, Energy and Buildings 72: 157–166.
[13] Jafarov, E.M. (2005). Design modification of sliding mode observers for uncertain MIMO systems without and with time-delay, Asian Journal of Control 7(4): 380–392.
[14] Jiang, Z. and Dougal, R.A. (2004). Synergetic control of power converters for pulse current charging of advanced batteries from a fuel cell power source, IEEE Transactions on Power Electronics 19(4): 1140–1150.
[15] Kim, W. and Katipamula, S. (2018). A review of fault detection and diagnostics methods for building systems, Science and Technology for the Built Environment 24(1): 3–21.
[16] Kolesnikov, A., Veselov, G. and Kolesnikov, A. (2000). Modern Applied Control Theory: Synergetic Approach in Control Theory, TRTU, Moscow/Taganrog, pp. 4477–4479.
[17] Kuz’menko, A., Kolesnikov, A. and Kolesnitchenko, D. (2015). Novel robust control of hydrogenerator: The synergetic approach, IFAC-PapersOnLine 48(11): 451–456.
[18] Medjbeur, L., Harmas, M., Benaggoune, S. and Zehar, K. (2018). An adaptive fuzzy h synergetic approach to robust control, Journal of Dynamic Systems, Measurement, and Control 140(1): 011008.
[19] Nusawardhana, A., Zak, S. and Crossley, W. (2007). Nonlinear synergetic optimal controllers, Journal of Guidance, Control, and Dynamics 30(4): 1134–1147.
[20] Patton, R.J., Frank, P.M. and Clarke, R.N. (1989). Fault Diagnosis in Dynamic Systems: Theory and Application, Prentice-Hall, Upper Saddle River, NJ.
[21] Qi, X., Theilliol, D., He, Y. and Han, J. (2017). An active fault-tolerant control framework against actuator stuck failures under input saturations, International Journal of Applied Mathematics and Computer Science 27(4): 749–761, DOI: 10.1515/amcs-2017-0052.
[22] Sauter, D. and Hamelin, F. (1999). Frequency-domain optimization for robust fault detection and isolation in dynamic systems, IEEE Transactions on Automatic Control 44(4): 878–882.
[23] Sauter, D., Yamé, J., Aubrun, C. and Hamelin, F. (2015). Design of fault isolation filter for control reconfiguration: Application to energy efficiency control in buildings, 23rd Mediterranean Conference on Control and Automation (MED), Torremolinos, Spain, pp. 197–202.
[24] Seybold, L., Witczak, M., Majdzik, P. and Stetter, R. (2015). Towards robust predictive fault-tolerant control for a battery assembly system, International Journal of Applied Mathematics and Computer Science 25(4): 849–862, DOI: 10.1515/amcs-2015-0061.
[25] Slotine, J.-J.E. and Li, W. (1991). Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, NJ.
[26] Utkin, V.I. (2013). Sliding Modes in Control and Optimization, Springer Science Business Media.
[27] Veselić, B., Draženović, B. and Milosavljević, Č. (2014). Sliding manifold design for linear systems with unmatched disturbances, Journal of the Franklin Institute 351: 1920–1938.
[28] Yu, Y., Woradechjumroen, D. and Yu, D. (2014). A review of fault detection and diagnosis methodologies on air-handling units, Energy and Buildings 82: 550–562.
[29] Zhu, W., Zheng, Y., Dai, J. and Zhou, J. (2017). Design of integrated synergetic controller for the excitation and governing system of hydraulic generator unit, Engineering Applications of Artificial Intelligence 58: 79–87.