Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2019_29_3_a1, author = {Ko{\l}aczek, Damian and Spisak, Bart{\l}omiej J. and Wo{\l}oszyn, Maciej}, title = {The phase-space approach to time evolution of quantum states in confined systems: {The} spectral split-operator method}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {439--451}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a1/} }
TY - JOUR AU - Kołaczek, Damian AU - Spisak, Bartłomiej J. AU - Wołoszyn, Maciej TI - The phase-space approach to time evolution of quantum states in confined systems: The spectral split-operator method JO - International Journal of Applied Mathematics and Computer Science PY - 2019 SP - 439 EP - 451 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a1/ LA - en ID - IJAMCS_2019_29_3_a1 ER -
%0 Journal Article %A Kołaczek, Damian %A Spisak, Bartłomiej J. %A Wołoszyn, Maciej %T The phase-space approach to time evolution of quantum states in confined systems: The spectral split-operator method %J International Journal of Applied Mathematics and Computer Science %D 2019 %P 439-451 %V 29 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a1/ %G en %F IJAMCS_2019_29_3_a1
Kołaczek, Damian; Spisak, Bartłomiej J.; Wołoszyn, Maciej. The phase-space approach to time evolution of quantum states in confined systems: The spectral split-operator method. International Journal of Applied Mathematics and Computer Science, Tome 29 (2019) no. 3, pp. 439-451. http://geodesic.mathdoc.fr/item/IJAMCS_2019_29_3_a1/
[1] Baker, G.A. (1958). Formulation of quantum mechanics based on the quasi-probability distribution induced on phase space, Physical Review 109(6): 2198–2206, DOI: 10.1103/PhysRev.109.2198.
[2] Balazs, N.L. and Jennings, B.K. (1984). Wigner’s function and other distribution functions on Mock phase spaces, Physics Reports 104(6): 347–391, DOI: 10.1016/0370-1573(84)90151-0.
[3] Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A. and Sternheimer, D. (1977). Quantum mechanics as a deformation of classical mechanics, Letters in Mathematical Physics 1(6): 521–530, DOI: 10.1007/BF00399745.
[4] Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A. and Sternheimer, D. (1978a). Deformation theory and quantization. I: Deformation of symplectic structures, Annals of Physics 111(1): 61–110, DOI: 10.1016/0003-4916(78)90224-5.
[5] Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A. and Sternheimer, D. (1978b). Deformation theory and quantization. II: Physical applications, Annals of Physics 111(1): 111–151, DOI: 10.1016/0003-4916(78)90225-7.
[6] Benedict, M.G. and Czirják, A. (1999). Wigner functions, squeezing properties, and slow decoherence of a mesoscopic superposition of two-level atoms, Physical Review A 60(5): 4034–4044, DOI: 10.1103/PhysRevA.60.4034.
[7] Berkovitz, L.D. (1974). Optimal Control Theory, Springer-Verlag, New York, NY.
[8] Błaszak, M. and Domański, Z. (2010). Phase space quantum mechanics, Annals of Physics 327(2): 167–211, DOI: 10.1016/j.aop.2011.09.006.
[9] Bondar, D.I., Cabrera, R., Zhdanov, D.V. and Rabitz, H.A. (2013). Wigner phase-space distribution as a wave function, Physical Review A 88(5): 052108–1–052108–6, DOI: 10.1103/PhysRevA.88.052108.
[10] Castellani, L. (2000). Non-commutative geometry and physics: A review of selected recent results, Classical and Quantum Gravity 17(17): 3377–3401, DOI: 10.1088/0264-9381/17/17/301.
[11] Chin, S.A. (1997). Symplectic integrators from composite operator factorizations, Physics Letters A 226(6): 344–348, DOI: 10.1016/S0375-9601(97)00003-0.
[12] Chin, S.A. and Chen, C.R. (2002). Gradient symplectic algorithms for solving the Schr¨odinger equation with time-dependent potentials, The Journal of Chemical Physics 117(4): 1409–1415, DOI: 10.1063/1.1485725.
[13] Ciurla, M., Adamowski, J., Szafran, B. and Bednarek, S. (2002). Modelling of confinement potentials in quantum dots, Physica E: Low-dimensional Systems and Nanostructures 15(4): 261–268, DOI: 10.1016/S1386-9477(02)00572-6.
[14] Curtright, T.L. and Zachos, C.K. (2012). Quantum mechanics in phase space, Asia-Pacific Physics Newsletter 1(1): 37–46, DOI: 10.1142/S2251158X12000069.
[15] Dattoli, G., Giannessi, L., Ottaviani, P.L. and Torre, A. (1995). Split-operator technique and solution of Liouville propagation equations, Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 51(1): 821–824, DOI: 10.1103/PhysRevE.51.821.
[16] Delius, G.W. and Hüffmann, A. (1996). On quantum Lie algebras and quantum root systems, Journal of Physics A: Mathematical and General 29(8): 1703–1722, DOI: 10.1088/0305-4470/29/8/018.
[17] Feit, M.D., Fleck, J.A. and Steiger, A. (1982). Solution of the Schrödinger equation by a spectral method, Journal of Computational Physics 47(3): 412–433, DOI: 10.1016/0021-9991(82)90091-2.
[18] Gómez, E.A., Thirumuruganandham, S.P. and Santana, A. (2014). Split-operator technique for propagating phase space functions: Exploring chaotic, dissipative and relativistic dynamics, Computer Physics Communications 185(1): 136–143, DOI: 10.1016/j.cpc.2013.08.025.
[19] Hiley, B.J. (2015). On the relationship between the Wigner–Moyal approach and the quantum operator algebra of von Neumann, Journal of Computational Electronics 14(4): 869–878, DOI: 10.1007/s10825-015-0728-7.
[20] Hillery, M., O’Connell, R.F., Scully, M.O. and Wigner, E.P. (1984). Distribution functions in physics: Fundamentals, Physics Reports 106(3): 121–167, DOI: 10.1016/0370-1573(84)90160-1.
[21] Isar, A. and Scheid, W. (2004). Deformation of quantum oscillator and of its interaction with environment, Physica A: Statistical Mechanics and Its Applications 335(1–2): 79–93, DOI: 10.1016/j.physa.2003.12.017.
[22] Kaczor, U., Klimas, B., Szydłowski, D., Wołoszyn, M. and Spisak, B. (2016). Phase-space description of the coherent state dynamics in a small one-dimensional system, Open Physics 14(1): 354–359, DOI: 10.1515/phys-2016-0036.
[23] Kenfack, A. (2016). Comment on Nonclassicality indicator for the real phase-space distribution functions, Physical Review A 93(3): 036101-1–036101-2, DOI: 10.1103/PhysRevA.93.036101.
[24] Kenfack, A. and Życzkowski, K. (2004). Negativity of the Wigner function as an indicator of non-classicality, Journal of Optics B Quantum and Semiclassical Optics 6(10): 396–404, DOI: 10.1088/1464-4266/6/10/003.
[25] Khademi, S., Sadeghi, P. and Nasiri, S. (2016). Reply to Comment on Nonclassicality indicator for the real phase-space distribution functions, Physical Review A 93(3): 036102-1–036102-2, DOI: 10.1103/PhysRevA.93.036102.
[26] Kołaczek, D., Spisak, B.J. and Wołoszyn, M. (2018). Phase-space approach to time evolution of quantum states in confined systems. The spectral split-operator method, in P. Kulczycki et al. (Eds), Contemporary Computational Science, AGH-UST Press, Cracow, p. 5.
[27] Kołaczek, D., Spisak, B.J. and Wołoszyn, M. (2020). Phase-space approach to time evolution of quantum states in confined systems. The spectral split-operator method, in P. Kulczycki et al. (Eds), Information Technology, Systems Research, and Computational Physics, Springer, Cham, pp. 307–320.
[28] Kubo, R. (1964). Wigner representation of quantum operators and its applications to electrons in a magnetic field, Journal of the Physical Society of Japan 19(11): 2127–2139, DOI: 10.1143/JPSJ.19.2127.
[29] Lechner, G. (2011). Deformations of quantum field theories and integrable models, Communications in Mathematical Physics 312(1): 265–302, DOI: 10.1007/s00220-011-1390-y.
[30] Lee, H.-W. (1995). Theory and application of the quantum phase-space distribution functions, Physics Reports 259(3): 147–211, DOI: 10.1016/0370-1573(95)00007-4.
[31] Leung, B. and Prodan, E. (2013). A non-commutative formula for the isotropic magneto-electric response, Journal of Physics A: Mathematical and Theoretical 46(15): 085205-1–085205-14, DOI: 10.1088/1751-8113/46/8/085205.
[32] Luenberger, D.G. (1979). Introduction to Dynamic Systems, Theory, Models, and Applications, John Wiley Sons, Inc., New York, NY.
[33] Ozorio de Almeida, A.M. (1998). The Weyl representation in classical and quantum mechanics, Physics Reports 295(6): 265–342, DOI: 10.1016/S0370-1573(97)00070-7.
[34] Polderman, J.W. and Willems, J.C. (1998). Introduction to Mathematical Systems Theory. A Behavioral Approach, Springer-Verlag, New York, NY.
[35] Pool, J.C.T. (1966). Mathematical aspects of the Weyl correspondence, Journal of Mathematical Physics 7(1): 66–76, DOI: 10.1063/1.1704817.
[36] Sadeghi, P., Khademi, S. and Nasiri, S. (2010). Nonclassicality indicator for the real phase-space distribution functions, Physical Review A 83(1): 012102-1–012102-8, DOI: 10.1103/PhysRevA.82.012102.
[37] Sontag, E.D. (1990). Mathematical Control Theory. Deterministic Finite Dimensional Systems, Springer-Verlag, New York, NY.
[38] Tatarskiĭ, V.I. (1983). The Wigner representation of quantum mechanics, Soviet Physics Uspekhi 26(4): 311–327, DOI: 10.1070/PU1983v026n04ABEH004345.
[39] Ter Haar, D. (1961). Theory and applications of the density matrix, Reports on Progress in Physics 24(1): 304–362, DOI: 10.1088/0034-4885/24/1/307.
[40] Torres-Vega, G. and Frederick, J.H. (1982). Numerical method for the propagation of quantum-mechanical wave functions in phase space, Physical Review Letters 67(19): 2601–2604, DOI: 10.1103/PhysRevLett.67.2601.
[41] Walker, J.A. (1980). Dynamical Systems and Evolution Equations. Theory and Applications, Plenum Press, New York, NY.
[42] Wigner, E. (1932). On the quantum correction for thermodynamic equilibrium, Physical Review 40(5): 749–759, DOI: 10.1103/PhysRev.40.749.
[43] Xue, Y. and Prodan, E. (2012). The noncommutative Kubo formula: Applications to transport in disordered topological insulators with and without magnetic fields, Physical Review. B: Condensed Matter 86(15): 155445-1–155445-17, DOI: 10.1103/PhysRevB.86.155445.